首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用电子克隆的方法,结合RT-PCR和SMART RACE技术,首次从烟草(Nicotiana tabacum)中克隆到1个胞质6-磷酸葡萄糖酸脱氢酶(6PGDH)基因的c DNA序列,命名为Nt6PGDH(Gen Bank登录号:KM211534)。该基因c DNA全长1 932bp,开放阅读框1 455 bp,编码484个氨基酸,与番茄(Solanum lycopersicum)和马铃薯(Solanum tuberosum)的6PGDH氨基酸序列一致性最高,为95%。生物信息学分析表明,Nt6PGDH氨基酸序列不存在信号肽和转运肽,无跨膜结构域,定位于细胞质。对烟草不同发育时期Nt6PGDH基因的表达情况分析发现,Nt6PGDH基因在烟草旺长期根、茎、叶中的表达量均高于苗期,并且在同一发育时期,烟草根中表达量最强,茎次之,叶片最弱。  相似文献   

2.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个关键酶。在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位。结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生。讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料。  相似文献   

3.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个酶.在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位.结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生.讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料.  相似文献   

4.
利用RT-PCR技术、巢式PCR技术、3′-RACE和5′-RACE技术从龟裂链霉菌K-16菌株中克隆获得zwf基因的全长cDNA序列。测序结果表明:经软件Vector NTI 11.0拼接zwf基因全长cDNA序列为1 679 bp,并带有一段很短的poly(A)尾巴,包含1 347 bp的开放读码框(ORF),编码一个含449个氨基酸残基的蛋白质。Blast2go生物信息学分析结果表明:该基因编码的酶为葡萄糖-6-磷酸脱氢酶,通过KEGG代谢途径注释明确该基因编码的酶是参与谷胱甘肽代谢和磷酸戊糖途径代谢的关键酶。  相似文献   

5.
棉花咖啡酰辅酶A-O-甲基转移酶基因的克隆及表达   总被引:5,自引:2,他引:3  
根据棉花纤维特异表达cDNA文库分析得到的咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)基因EST序列设计引物,采用RT-PCR技术首次从棉花中克隆了一个CCoAOMT基因,命名为GhCCoAOMT1(GenBank登录号为FJ848871).研究结果表明:GhCCoAOMT1基因cDNA全长960 bp,具有一个753 bp的开放阅读框,5'非编码区为9 bp,3'非编码区为198 bp,编码250个氨基酸,预测分子量约为28.306 kDa,等电点为5.39.利用PCR方法克隆了GhCCoAOMT1基因的基因组序列,长度为1 311 bp,包含5个外显子和4个内含子.氨基酸同源性分析发现,GhCCoAOMT1与来自毛白杨、烟草和苎麻的CCoAOMT同源性较高.半定量RT-PCR检测表明,GhCCoAOMT1基因在棉花各个组织中都有表达,其中茎部的表达量最高,其次表达量依次为根>花瓣>子叶>10 d纤维>雄蕊>胚珠>叶.  相似文献   

6.
为认识葫芦科植物中葫芦素生物合成途径所需鲨烯合酶基因结构特征,克隆白皮黄瓜鲨烯合酶(squalene synthase,SS)基因c DNA并进行生物信息学分析。根据葫芦科植物绞股蓝、罗汉果、红花栝楼等的鲨烯合酶基因cDNA序列,设计白皮黄瓜鲨烯合酶引物,分别采用3'RACE和5'RACE技术扩增鲨烯合酶基因3'端和5'端。获得白皮黄瓜鲨烯合酶基因的两个cDNA克隆,命名为CsSS1和CsSS2,其cDNA序列全长分别为1 627 bp和1 534 bp,都编码417个氨基酸残基,分子质量为47.6 k D。成功克隆得到白皮黄瓜鲨烯合酶基因全长cDNA序列并对其进行序列分析,后续可用于葫芦素生物合成途径所需鲨烯合酶基因正选择位点功能分析。  相似文献   

7.
6-磷酸葡萄糖脱氢酶催化6-磷酸葡萄糖生成6-磷酸葡萄糖酸,并生成NADPH,是微生物胞内磷酸戊糖途径(PPP)的关键酶。本研究以食品安全菌米曲霉CICC2012为材料,克隆获得6-磷酸葡萄糖脱氢酶基因(GenBank登录号:JN123468)。序列分析表明,该酶是由222个氨基酸组成的亲水性蛋白;128~134位氨基酸序列DHYLGKE为活性区域;170~176位氨基酸序列GTEGRGG可能为辅因子结合位点。进化树分析表明,米曲霉6-磷酸葡萄糖脱氢酶同其他丝状真菌及酵母的G6PDH较相似。  相似文献   

8.
少根根霉△^6-脂肪酸脱氢酶基因的克隆和表达   总被引:1,自引:0,他引:1  
根据真菌△^6-脂肪酸脱氢酶保守的氨基酸序列设计简并引物进行RT-PCR,获得一个593 bp的cDNA片段,再根据获得的部分序列设计基因特异性引物,通过cDNA末端扩增技术(RACE)获得该cDNA的3’和5’序列,从而得到全长为1482bp的cDNA序列。序列分析结果表明,该序列具有一个长度为1377bp、编码458个氨基酸的开放阅读框,所编码蛋白质的大小为52kD。与报道的△^6-脂肪酸脱氢酶一样,推测的氨基酸序列具有膜整合脂肪酸脱氢酶特异性的3个组氨酸保守区和疏水结构,在其氨基酸序列的N-末端具有类似于细胞色素b5的血红素结合区。该序列为一个新的编码△^6-脂肪酸脱氢酶的基因,为了验证其功能,把开放阅读框序列RAD6亚克隆到表达载体pYES2.0,构建重组表达载体pYRAD6,并转化到酿酒酵母的缺陷型菌株INVScl进行表达。通过气相色谱(GC)和气相色谱/质谱(GC-MS)分析表明,该序列在酿酒酵母中获得表达。所编码的酶具有△^6-脂肪酸脱氢酶活性,能将外源性的底物亚油酸转化为γ-亚麻酸,γ-亚麻酸的含量占酵母总脂肪酸的3.85%。  相似文献   

9.
水稻葡萄糖-6-磷酸脱氢酶cDNA的电子克隆   总被引:31,自引:2,他引:29  
电子克隆是基因克隆的新策略,以小麦胞质葡萄糖-6-磷酸脱氢酶cDNA(Tagpdl克隆)序列为信息探针,在GenBank水稻nr数据库中找到高度同源的水稻基因组序列,通过人工序列拼接及RT-PCR确认得到了水稻该基因的全长cDNA序列,命名为OsG6PDH,OsG6PDH与小麦Tagpdl克隆的DNA一致率为88%,推导的氨基酸序列与小麦,番茄,烟草的胞质葡萄糖-6-磷酸脱氢酶基因的一致率分别为89%,79%,80%,经RT-PCR表达谱分析,OsG6PDH在水稻幼穗,胚,根,叶中都有表达,在幼穗与根中表达略高,另外,讨论了利用水稻基因组信息的电子克隆方法克隆水稻功能基因的可行性。  相似文献   

10.
根据真菌Δ6-脂肪酸脱氢酶基因保守的组氨酸Ⅱ区和Ⅲ区附近保守序列设计兼并引物进行RT-PCR,得到雅致枝霉(Thamnidium elegans)As3.2806Δ6-脂肪酸脱氢酶基因459bp部分cDNA序列,然后通过快速扩增cDNA末端技术(RACE)向两端延伸得到1504bp的Δ6-脂肪酸脱氢酶基因全长cDNA序列。序列分析表明有一个1377bp、编码459个氨基酸的开放阅读框TED6。推测的氨基酸序列与已知其他真菌的Δ6-脂肪酸脱氢酶基因的氨基酸序列比对,具有3个组氨酸保守区、2个疏水区及N末端细胞色素b5融合区。将此编码区序列亚克隆到酿酒酵母缺陷型菌株INVSc1的表达载体pYES2.0中,构建表达载体pYTED6,并在酿酒酵母INVSc1中异源表达。通过气相色谱(GC)和气相色谱/质谱(GC-MS)分析表明,该序列在酿酒酵母中获得表达,产生γ-亚麻酸(GLA)的含量占酵母总脂肪酸的7.5%。证明此序列编码的蛋白能将外加的亚油酸转化为γ-亚麻酸,是一个新的有功能的Δ6-脂肪酸脱氢酶基因(GenBank,AY941161)。  相似文献   

11.
An expressed sequence tag (EST) approach was used to retrieve cDNA clones involved in carbon metabolism in Laminaria digitata Lamouroux. Six partial open reading frames were identified, respectively encoding an α-type carbonic anhydrase (CA), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), phosphoglycerate kinase (PGK), glycolate oxidase (GLO), and GDP-4-keto-6-d-mannose-3,5-epimerase-4-reductase, also known as fucose synthase (FS). These enzymes were further characterized through Southern blot analyses, amino acid sequence comparisons, and patterns of expression. In contrast to the other genes, which are expressed in both the gametophytic and sporophytic generations of L. digitata, the α-type carbonic anhydrase messenger RNA was shown by RT-PCR and northern blot analyses to be present in the gametophytes only. The evolutionary relationships of these genes and their interest as molecular tools for investigating carbon fluxes in brown algae are discussed.  相似文献   

12.
Previous attempts to purify chloroplast 6-phosphogluconate dehydrogenase (cp6PGDH), a key enzyme of the oxidative pentose phosphate pathway, have been unsuccessful due to rapid activity loss. An efficient purification protocol was developed and the enzyme from spinach leaves was purified 1000-fold to apparent homogeneity with a specific activity of 60 U.mg-1. The enzyme is a homodimer with subunits of 50 kDa. Antibodies raised against the purified cp6PGDH detected a 53-kDa protein from a crude extract, indicating alterations during purification. Purified cp6PGDH was microsequenced and the corresponding spinach cDNA was cloned using PCR techniques and degenerate primers. The cDNA for cytosolic 6PGDH from spinach was cloned for comparison. Phylogenetic analysis in the context of available homologues from eukaryotes and eubacteria revealed that animal and fungal cytosolic 6PGDH sequences are more similar to their homologues from gamma-proteobacteria, whereas plant 6PGDH is more similar to its cyanobacterial homologues. The ancestral gene for higher plant 6PGDH was acquired from the antecedent of plastids through endosymbiosis and gene transfer to the nucleus. A subsequent gene duplication gave rise to higher plant cytosolic 6PGDH, which assumed the function of its pre-existing cytosolic homologue through endosymbiotic gene replacement. The protein phylogeny of both 6PGDH and of the first enzyme of the oxidative pentose phosphate pathway, glucose-6-phosphate dehydrogenase, indicate a surprisingly close relationship between the plant and Trypanosoma brucei lineages, suggesting that T. brucei (a relative of Euglena gracilis) may be secondarily nonphotosynthetic.  相似文献   

13.
Previously, we have shown that the age-related changes in 6-phosphogluconate dehydrogenase (6PGDH) activity depend on sex, and that oestradiol is playing a crucial role in the regulation of 6PGDH gene expression in rat liver, but not in other tissues [Pankiewicz, A., Sledzinski, T., Nogalska, A., Swierczynski, J., 2003. Tissue specific, sex and age-related differences in the 6-phosphogluconate dehydrogenase gene expression. Int. J. Biochem. Cell Biol. 35, 235-245.]. To complete the knowledge on the influence of sex hormones on 6PGDH activity, experiments have been performed on the effect of testosterone on 6PGDH gene expression in rat white adipose tissue and liver. The results presented here disclosed that in young male rats high serum testosterone concentration was associated with high white adipose tissue 6PGDH activity. After orchidectomy, a decrease in serum testosterone concentration (both in young and old rats) was observed. In contrast, no changes in white adipose tissue and liver 6PGDH activity were found. In female rats, both young and old, serum testosterone concentration was below the limit of detection, whereas 6PGDH activity was much higher in young than in old animals. Moreover, the testosterone administration to 9-month old male rats (which displayed much lower serum testosterone concentration that young animals) resulted in no effect on 6PGDH activity either in WAT or in the liver. In conclusion, the results presented in this paper indicate that testosterone does not play any role in the age- and gender-related differences in 6PGDH gene expression in white adipose tissue.  相似文献   

14.
The pentose phosphate pathway (PPP) is the important metabolism pathway in plant. In the present study, a cDNA encoding one of the key enzymes of PPP, 6-phosphogluconate dehydrogenase(6PGDH), was isolated from rice and designated as Os6PGDH. The Os6PGDH encoding protein is a cytosolic isoenzyme according to the absence of plastid transit peptide at the N-terminus. The full-length cDNA of 1751 bp encodes 480 amino acids and its putative protein sequence is 94%, 84% and 83% identical to maize, spinach and alfalfa 6PGDHs respectively. Comparison of the cloned mRNA sequence with that of the genomic sequence from the Rice Genome Project showed a simple genomic organization devoid of introns in the translated region of the gene. RT-PCR experiments revealed that Os6PGDH expression was high in inflorescence, low in root and embryos but almost absent in leaves. Furthermore, Os6PGDH was up-regulated in the shoots under salt stress. It is suggested that 6PGDH in plant may play an important role in cell division and salt response.  相似文献   

15.
We studied the production of L-lysine in Corynebacterium glutamicum ATCC 21543 non growing cells obtained by nutrient limitation. Statistical analysis revealed significant differences in the L-lysine titers of glucose, gluconic acid or glucose-gluconic acid cultures. Higher L-lysine titer obtained in batch cultures with mixed carbon sources or gluconic acid alone were found to be associated with a high 6-phosphogluconate dehydrogenase activity (6PGDH, E.C.1.1.1.44). This enzyme is a pivotal enzyme within the hexose monophosphate pathway, and thus of importance for L-lysine production. 6PGDH was purified and characterized. The purified enzyme migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 52.5 kDa. The molecular mass of the native enzyme was estimated to be 120 kDa by molecular exclusion chromatography, thus suggesting a homodimeric structure. The amino terminal sequence shows a strong similarity (a match of 86% of the first 20 amino acid) to the 6PGDH from other microorganisms such as, E. coli and B. subtilis. The pI of the dimeric native enzyme and the optimum pH were 6.2 and 8.0, respectively. For the oxidative decarboxylation of 6-phosphogluconate, Km of 71 μM and 43 μM were obtained for 6-phosphogluconate and NADP+, respectively.  相似文献   

16.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

17.
15-羟基前列腺素脱氢酶(PGDH)属于抑癌基因,在多种肿瘤中表达缺失,在肿瘤的发生发展中起着重要作用。提取人正常大肠黏膜组织总RNA,利用RT-PCR方法扩增得到PGDH基因的编码序列,克隆入原核表达载体pBV220,测序鉴定正确后转化E.coli DH5α,经温控诱导表达,表达产物进行SDS-PAGE和Western blot,证实为相对分子质量约为29000的PGDH-His6蛋白,表达产物以包涵体形式存在,3h诱导表达量最高,约占菌体总蛋白的30%。经Ni2+配体亲和层析纯化得到纯度大于95%的目的蛋白。重组PGDH简单复性后具有一定的生物活性,约为3.7×104U/mg,为下一步研究其在肿瘤中的作用奠定了基础。  相似文献   

18.
19.
The coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans was investigated. By investigation of the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in the soluble fraction of G. oxydans, and cloning and expression of genes in Escherichia coli, it was found that both G6PDH and 6PGDH have NAD/NADP dual coenzyme specificities. It was suggested that the pentose phosphate pathway is responsible for NADH regeneration in G. oxydans.  相似文献   

20.
The changes in the activity of glucose-6-phosphate dehydrogenase (G6PDH) (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH) (EC 1.1.1.44) in leaf tissues and the subcellular localisation of their isozymes in protoplasts derived from healthy and potato virus Y (PVY) infected plants of Nicotiana tabacum L. cv. Samsun were determined. The activities of G6PDH and 6PGDH were markedly increased in virus-infected leaves during the acute phase of infection both in crude homogenate and partial purificate (when compared with the values found in healthy control plants) and correlated with the multiplication curve of PVY. Intact chloroplasts and soluble cytosolic proteins were obtained from whole plants upon the culmination of the multiplication curve of PVY and upon the enhancement of the activity of both dehydrogenases by means of differential centrifugation of broken protoplasts. The chloroplastic fraction from infected protoplasts (based on chlorophyll content or NADP+-triosephosphate dehydrogenase activity) showed an enhanced activity of G6PDH (1.81 times that of healthy protoplasts), and 6PGDH (1.77 times). Cytosol from infected protoplasts (based on phosphoenolpyruvate carboxylase activity) contained only slightly enhanced activities of G6PDH and 6PGDH (only 1.26 and 1.16 times, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号