首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When in vitro -matured oocytes were enucleated, aged and kept at 10°C before reconstitution, the in vitro development of nuclear transfer embryos to the blastocyst stage did not differ from that obtained with in vitro fertilization. This suggests that these recipient cytoplasts constitute a suitable environment for the development of the nuclear transplant. The aim of the present study was to investigate, at the biochemical level, the result of the preparation of recipient oocytes, including enucleation, ageing and cooling. For this purpose the phosphorylation profiles of four groups of in vitro -matured bovine oocytes (aged oocytes, aged-cooled oocytes, enucleated-aged oocytes and enucleated-aged-cooled oocytes (recipient cytoplasts)) were analyzed. These recipient cytoplasts exhibited a phosphorylation profile similar to that of activated oocytes. Maturation promoting factor (MPF) activity, which was high in young metaphase II oocytes, in aged oocytes, in enucleated-aged oocytes and in aged-cooled oocytes, dropped to the basal level in enucleated-aged-cooled oocytes (recipient cytoplasts), while mitogen-activated protein kinase (MAPK) activity remained elevated. The combination of enucleation, ageing and cooling following oocyte in vitro maturation resulted in an interphase-like stage cytoplasm having a phosphorylation profile and low MPF activity similar to activated oocytes, but exhibiting high MAPK activity.  相似文献   

2.
Oocytes enucleated at the second metaphase stage (MII) are often used as recipient cytoplasts for nuclear transfer. The oocyte's nuclear material has been traditionally removed blindly by aspirating the first polar body (Pb1) along with a portion of the cytoplasm. However, the Pb1-guided enucleation method is unreliable because the position of the Pb1 is variable. A previous study showed that pretreatment of mouse oocytes with 3% (0.09 M) sucrose allowed visualization of the metaphase spindle and chromosomes under standard light microscopy and led to a 100% enucleation rate. The same sucrose treatment, however, did not produce the same effect in bovine oocytes. In this study, we increased the concentration of sucrose to 0.3-0.9 M in PBS containing 20% fetal bovine serum (SPF) and found that the majority of the treated bovine oocytes (75%-86%) formed a small transparent bud into the perivitelline space, as compared with the 0.1 M sucrose (6%) or the no sucrose (0%) control groups. Staining of DNA with Hoechst 33342 revealed that these projections coincided with the position of the metaphase chromosomes in 100% of sucrose-treated oocytes, whereas only 31% of oocytes showed alignment of the position of Pb1 with their nuclear materials. Furthermore, 95% of oocytes treated in 0.3 M SPF were successfully enucleated by removing a small amount of cytoplasm adjacent to the projection. This is a significantly higher enucleation rate than that obtained by conventional Pb1-guided enucleation, even when a larger amount of cytoplasm was removed. For nuclear transfer, the enucleated oocytes treated with sucrose did not differ from the control oocytes in rates of fusion, cleavage, or development to blastocysts, or in the average cell numbers in blastocysts. This study demonstrated that 0.3 M sucrose treatment of bovine oocytes facilitates the localization of metaphase chromosomes under normal light microscopy and hence increases enucleation efficiency without compromising the in vitro development potential of cloned embryos by nuclear transfer.  相似文献   

3.
Conventional methods of somatic cell nuclear transfer either by electrofusion or direct nucleus injection have very low efficiency in animal cloning, especially interspecies cloning. To increase the efficiency of interspecies somatic cell nuclear transfer, in the present study we introduced a method of whole cell intracytoplasmic injection (WCICI) combined with chemical enucleation into panda-rabbit nuclear transfer and assessed the effects of this method on the enucleation rate of rabbit oocytes and the in vitro development and spindle structures of giant panda-rabbit reconstructed embryos. Our results demonstrated that chemical enucleation can be used in rabbit oocytes and the optimal enucleation result can be obtained. When we compared the rates of cleavage and blastocyst formation of subzonal injection (SUZI) and WCICI using chemically enucleated rabbit oocytes as cytoplasm recipients, the rates in the WCICI group were higher than those in the SUZI group, but there was no statistically siginificant difference (p > 0.05) between the two methods. The microtubule structures of rabbit oocytes enucleated by chemicals and giant panda-rabbit embryos reconstructed by WCICI combined with chemical enucleation were normal. Therefore the present study suggests that WCICI combined with chemical enucleation can provide an efficient and less labor-intensive protocol of interspecies somatic cell nuclear transfer for producing giant panda cloned embryos.  相似文献   

4.
This study reconstructed heterogeneous embryos using camel skin fibroblast cells as donor karyoplasts and ovine oocytes as recipient cytoplasts for investigating the developmental potential of the reconstructed embryos. Serum-starved adult camel skin fibroblast cells were used as donor somatic cells. Ovine oocytes matured in vitro were employed as recipient cytoplasts. The fusion of fibroblast cells into recipient cytoplasm was induced by electrofusion. The fused oocytes were activated by 5mM/ml inomycin with 2mM/ml 6-dimethylaminopurine (6-DMAP). The activated reconstructed embryos were co-cultured with ovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% fetal calf serum (FCS) for 168h. A total of 300 enucleated ovine oocytes were available for xenonuclear embryo reconstruction. The results showed that 71% of the nuclear transfer couplets were successfully fused, 55% of the fused oocytes cleaved within 48h after activation, 82% of the cleaved oocytes developed to 2-16-cell embryo stages and 18% of the cleaved nuclear transfer zygotes developed to the morula stage. This study demonstrated that the xenonuclear transfer camel embryos can undergo the first embryonic division and subsequent development to morula stage in vitro.  相似文献   

5.
应用Spindle-view对体外成熟培养36、42、44和48h的猪体外成熟卵母细胞减数分裂纺锤体进行去核操作,并与传统去核方法(McGrath-Solter去核法,挤压去核法)相比较,结果表明:①在42~48h之间利用Spindle-view得到的猪卵纺锤体影像与极体的相对位置没有明显的变化;②Spindle-view适合用于猪体外成熟卵母细胞减数分裂纺锤体的观察及去核;去核效率与其他两种方法相比差异极显著(95.5%,42.1%,74.2%,P<0.01);③纺锤体成像是否清晰可用于猪卵母细胞的质量监控。  相似文献   

6.
A thorough understanding of the mechanism underlying fragmentation would contribute to the improvement of the developmental ability of reconstructed embryos after nuclear transfer. We conducted the present study to elucidate the influence of the nuclear transfer method on fragmentation of enucleated oocytes and the relationship between change in actin filament distribution and fragmentation. In Experiment 1, we examined activation rates of in vitro matured oocytes. These were 12.9% in maturation alone, 75.7% in electrical stimulation, and 57.9% in ethanol/cycloheximide treatment. In Experiment 2, we observed a higher rate of fragmentation (P < 0.05) in cultured oocytes that had been enucleated and electrically stimulated than in oocytes subjected to the other treatments (maturation alone, enucleation alone and enucleation plus ethanol/cycloheximide activation). In Experiment 3, we stained enucleated and electrically stimulated oocytes with rhodamine/phalloidin dye to show discontinuous distributions in the ooplasm of treated oocytes; oocytes in the other treatment groups showed homogenous distributions of actin filaments (AFs). In Experiment 4, we added cytochalasin B, an inhibitor of AF polymerization, to the culture medium, which prevented fragmentation of enucleated plus electrically stimulated oocytes (cytochalasin B, [+] 0.0%, [-] 60.7% at 24 h after treatment, P < 0.05). In Experiment 5, we investigated the relationship between fragmentation and alteration in AF distribution in enucleated plus electrically stimulated oocytes. At 0 h of culture, enucleated plus electrically stimulated oocytes showed discontinuous distributions of AFs, while nontreated oocytes showed homogenous AF distributions. At 24 and 48 h of culture, fragmentation proceeded in enucleated plus electrically stimulated oocytes and the discontinuous AF distribution diminished with time. In Experiment 6, we added hyaluronic acid (HA) to the culture medium, which suppressed fragmentation of enucleated plus electrically stimulated oocytes (HA, [+] 28.5%, [-] 66.4% at 24 h after treatment, P < 0.05). The results suggest that electrical stimulation induces a change in the AF distribution of oocytes, resulting in fragmentation, and that the addition of HA to the culture media is effective for the suppression of fragmentation.  相似文献   

7.
Effect of telophase enucleation on bovine somatic nuclear transfer   总被引:5,自引:0,他引:5  
Liu JL  Wang MK  Sun QY  Xu Z  Chen DY 《Theriogenology》2000,54(6):989-998
Telophase enucleation has been proven to be an efficient method for preparing recipient cytoplasts in bovine embryonic nuclear transfer (2, 11). This research was designed to study in vitro development of bovine oocytes containing transferred somatic cell nuclei, reconstructed by using enucleated in vitro-matured oocytes 32 h of age at telophase II stage as recipient cytoplasts, compared with those 24 h of age at metaphase II stage. Two protocols for donor cell injection were adopted, i.e., subzonal injection (SUZI) and intracytoplasmic injection (ICI). Bovine oviduct epithelial cells (BOECs) and bovine cumulus cells (BCCs) from an adult cow were used as nuclear donors for these experiments. In SUZI groups, the fusion rate of donor cells, both BOECs and BCCs, with MII enucleated oocytes were higher than those with TII enucleated oocytes (54% vs. 41% and 53% vs. 39%, respectively; P<0.05), but the development rates to morula plus blastocyst stage in MII groups were lower than those in TII groups (22% vs. 39% and 21% vs. 41%, respectively; P<0.05). In ICI groups, about 26% of enucleated MII oocytes injected with BOECs or BCCs cleaved and only small parts of them developed to blastocyst stage (4% and 3%, respectively; P>0.05). When BOECs or BCCs were intracytoplasmically injected into oocytes enucleated at TII stage, no blastocyst was formed in either donor cell group and no cleavage occurred in BOEC group. Our data demonstrated that telophase enucleation is beneficial to early embryo development when bovine somatic nuclei are transferred by subzonal injection. However, it is harmful when donor cells are directly injected into the cytoplast of the enucleated oocytes.  相似文献   

8.
This study was designed to determine the effects of Taxol pretreatment on the morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrified porcine oocytes matured in vitro. The result showed that: (1) the rate of normal mitochondria distribution in fresh group (92.85%) was significantly higher (P < 0.05) than that in other three groups (toxicity, 72.48%; vitrification, 50.83%; Taxol + vitrification, 69.98%) and Taxol pretreatment significantly (P < 0.05) increased the ratio of normal mitochondria distribution in vitrified oocytes; (2) lipid droplets in vitrified oocytes got cracked, resulting in a great number of smaller lipid droplets (diameter <5 μm). The number of lipid droplets (5–10 μm in diameter) in vitrified oocytes pretreated with Taxol was higher (P < 0.05) than that in the oocytes without Taxol pretreatment (81.87 ± 13.63 vs. 64.27 ± 13.72); (3) both toxicity and vitrification cause the difference in the ultrastructure of mitochondria and lipid droplets. Mitochondria were well maintained in the form of typical round and ellipse shape with smooth surface and clear outline and lipid droplets existed in the form of integrity in Taxol pretreatment group.In conclusion, Taxol pretreatment has positive effects on vitrified porcine oocytes matured in vitro in terms of morphology, distribution and ultrastructure of mitochondria and lipid droplets.  相似文献   

9.
Germinal vesicle (GV) oocytes matured in vitro are an alternative source for cytoplasmic recipients of nuclear transfer (NT). However, the developmental potential of oocytes matured in vitro is limited. In this study, we developed a protein-free maturation medium for mouse GV oocytes. Following parthenogenetic activation, the oocytes matured in the protein-free medium develop to blastocyst stage with a high efficiency, even up to the rate obtained from in vivo MII-oocytes (90.6% vs. 92.8%). Using the oocytes matured in the protein-free medium as the recipient, NT embryos develop to the blastocyst stage (17.6%). To further improve the developmental potential of NT embryos, we performed serial NT and compared the effect of three different activated cytoplasm samples derived from in vitro matured oocytes as the second recipient, that is, the effect of in vitro fertilized (IVF) zygote, the preactivated cytoplast and the IVF cytoplast, on the development of NT embryos. We found that when the pronucleus of NT zygote was transferred into the cytoplasm of the IVF zygote, the blastocyst formation increased to 39.4%. This is the first report to demonstrate the IVF zygote from oocytes matured in protein-free medium can be used successfully as the recipient for serial NT to enhance the developmental potential of mouse NT embryos from oocytes matured in the protein-free medium.  相似文献   

10.
In the present study, we examined the developmental ability of enucleated zygotes, MII oocytes, and parthenogenetically activated oocytes at pronuclear stages (parthenogenetic PNs) as recipient cytoplasm for rat embryonic cell nuclear transfer. Enucleated zygotes as recipient cytoplasm receiving two-cell nuclei allowed development to blastocysts, whereas the development of embryos reconstituted with MII oocytes and parthenogenetic PNs was arrested at the two-cell stage. Previous observations in rat two-cell embryos suggested that the distribution of microtubules is involved in two-cell arrest. Therefore, we also examined the distribution of microtubules using immunofluorescence. At the two-cell stage after nuclear transfer into enucleated zygotes, microtubules were distributed homogeneously in the cytoplasm during interphase, and normal mitotic spindles were observed in cleaving embryos from the two- to four-cell stage. In contrast, embryos reconstituted with MII oocytes and parthenogenetic PNs showed aberrant microtubule organization. In enucleated zygotes, fibrous microtubules were distributed homogeneously in the cytoplasm. In contrast, dense microtubules were localized at the subcortical area in the cytoplasm and strong immunofluorescence intensity was observed at the plasma membrane, while very weak intensity was detected in the central part of enucleated MII oocytes. In enucleated parthenogenetic PNs, high-density and fibrous microtubules were distributed in the subcortical and central areas, respectively. Pre-enucleated parthenogenetic PNs also showed lower intensity of microtubule immunofluorescence in the central cytoplasm than zygotes. In conclusion, the results of the present study showed that zygote cytoplasm is better as recipient than MII oocyte and parthenogenetic PNs for rat two-cell embryonic cell nuclear transfer to develop beyond four-cell stage. Furthermore, microtubule organization is involved in the development of reconstituted embryos to overcome the two-cell arrest.  相似文献   

11.
On the basis of structural observations bovine oocytes were grouped into four successive classed: 0, those before the luteinizing hormone (LH) surge; 1, those up to 8 h following the LH peak level; 2, those between 8 and 19 h after the LH peak level; and 3, those between 19 h after the LH peak level and ovulation. Oocytes in class 0 had mitochondria located in a generally peripheral position. Interior to the mitochondria were elements of rough endoplasmic reticulum (RER) and numerous membrane-bound vesicles which bore ribosome-like particles on their outer surface. The first visible changesater the LH peak level as seen in class 1 were the formation of the periviteline space with loss of contact between the cumulus cells and the oocyte, and ruffing of the nuclear envelope. These changes were followed b the resumption of meiosis as defined by germinal-vesicle breakdown (GVBD), the disappearance of RER, and the formation fo clusters of mitochondria in association with lipid droplets and elementrs of smooth endolasmic reticulum (SER). The period between 8 and 19 h following LH peak level (class 2) was characterized by intensive clustering of mitochoncria in association with lipid droplets and elements of SER, conversion of lipid, fusion of vesicles, and the appearance of ribosomes in the cytoplasm. During the final stage (class 3), the polar body was extruded, the mitochondria dispersed, and the majority of the organelles became located toward the center of the cell. The relatively organelle-free cortical region contained cortical granules immediately adjacent to the plasma membrane together with aggregates of tubular SER. The structural changes are discussed in the context of follicular steroidogenesis and oocyte developmental competence.  相似文献   

12.
This study investigated the basic conditions required for the production of horse embryos by the transfer of the nuclei of fetal and adult fibroblast cells to enucleated oocytes. Cumulus-oocyte complexes were recovered from abattoir ovaries and matured in vitro in groups of 20-30 for 28-30 h in tissue culture medium 199 containing 20% v:v fetal bovine serum in coculture with equine oviduct epithelial cells. Fetal fibroblast cells (FFC) were derived from a 32-day-old Thoroughbred x Pony fetus, and adult skin fibroblast cells (SFC) were obtained from subdermal biopsies recovered from a 4-yr-old female Pony. The rates of fusion between the recipient cytoplasm with either FFC or SFC were significantly greater when the cells were treated with a combination of direct current (DC) pulses and Sendai virus rather than with DC pulses alone (81%-82% vs. 49%-57%, P < 0.05). There were no differences in the rates of nuclear reprogramming between FFC and SFC (88% vs. 84%), but the rate of cleavage of the resulting embryos to the 2-cell stage was higher when FFC were used (53%) than when SFC were used (35%). Blastocysts were obtained from oocytes reconstructed with both types of donor cells and after culture in vitro for 6-7 days, but the overall proportion of blastocysts produced was very low in both cases (FFC, 4%; SFC, 7%). These results demonstrate a very limited potential for in vitro development of horse embryos after nuclear reprogramming following the transfer of nuclei from either fetal or adult fibroblasts into recipient enucleated oocytes.  相似文献   

13.
For production of viable somatic cell nuclear transferred (SCNT) miniature pig embryos, in vitro condition for controlling the quality of recipient oocytes derived from domestic pig ovaries should be evaluated. In the present study, to get information on optimal in vitro maturation (IVM) condition of oocytes, we investigated the effect of IVM duration of recipient oocytes on subsequent development of SCNT miniature pig embryos, the maturation-promoting factor (MPF) activity in recipient oocytes before and after SCNT, and the occurrence of premature chromosome condensation (PCC) and spindle morphologies of donor nuclei following SCNT. The optimal window of the IVM period in terms of in vitro developmental ability of SCNT embryos was determined to be 36-40 h after the start of IVM. The use of recipient oocytes matured for 36 and 40 h resulted in a high level of MPF activity before and after SCNT, and increased the occurrence of PCC in transferred nuclei compared to the use of oocytes matured for 44 and 52 h. The proportion of abnormal spindle-like structures increased as the IVM period was prolonged. In addition, SCNT embryos constructed from recipient cytoplasts obtained after 40 h of maturation by using fetal fibroblasts of miniature pigs were transferred to surrogate miniature pigs, and developed to full term. These results suggest that recipient oocytes matured for 36 h and 40 h effectively induce PCC with a normal cytoskeletal structure because of a high level of MPF activity; furthermore, the 40-h IVM period improves in vitro development of SCNT embryos to the blastocyst stage, resulting in the production of viable cloned miniature pigs.  相似文献   

14.
Cloning of bovine embryos by multiple nuclear transfer   总被引:3,自引:0,他引:3  
The in vitro development of multiple generation bovine nuclear transferred embryos to blastocysts and their survival ability after freezing and thawing were examined. Parent donor embryos which had 20 to 50 cells were recovered from superovulated cows. Follicular oocytes matured in vitro were used as recipient oocytes. The recipient oocytes enucleated at 22 to 24 h after the onset of maturation were preactivated at 33 h. Enucleated oocytes with a donor blastomere were fused 9 h after activation by an electric stimulus and the fused oocytes were cultured in vitro (first generation). Reconstituted oocytes that had developed to the 8- to 16-cell stage 3 to 4 d after fusion were used as donor embryos for the next generation. Recloning procedures were performed twice (second and third generations). The proportion of recipient oocytes successfully fused with a blastomere increased with the cycle of nuclear transfer. Eighty to 86% of fused oocytes developed to the 2-cell stage and there was no significant difference with the generation. The proportion of reconstituted embryos receiving blastomeres derived from first generation embryos had higher developmental ability in vitro, than those derived from other generations (43 vs 31% for 8 to 16-cell stage, 37 vs 20 and 21% for blastocyst stage). The number of cloned blastocysts increased with repeated nuclear transfer (once: 6.2 +/- 4.3, twice: 19.8 +/- 9.2 and three times: 30.0 +/- 14.7) but varied greatly with each parent donor embryo. The in vitro viability of cloned blastocysts after freezing and thawing (59%) was low but not significantly different from that obtained for in vitro fertilized blastocysts (72%). After transfer of either fresh or frozen-thawed cloned blastocysts to 21 recipients, 10 of them were pregnant on Day 60. Four and 3 offspring were produced from 20 fresh and 14 frozen-thawed blastocysts,respectively.  相似文献   

15.
Our and other previous studies have shown that telophase enucleation is an efficient method for preparing recipient cytoplasts in nuclear transfer. Conventional methods of somatic cell nuclear transfer either by electro-fusion or direct nucleus injection have very low efficiency in animal somatic cell cloning. To simplify the manipulation procedure and increase the efficiency of somatic cell nuclear transfer, this study was designed to study in vitro and in vivo development of Asian yellow goat cloned embryos reconstructed by direct whole cell intracytoplasmic injection (WCICI) into in vitro matured oocytes enucleated at telophase II stage. Our results demonstrated that the rates of cleavage and blastocyst development of embryos reconstructed by WCICI were slightly higher than in conventional subzonal injection (SUZI) group, but no statistic difference (P > 0.05) existed between these two methods. However, the percentage of successful embryonic reconstruction in WCICI group was significantly higher than that in SUZI group (P < 0.05). After embryo transfer at 4-cell stage, the foster in both groups gave birth to offspring. Therefore, the present study suggests that the telophase ooplasm could properly reprogram the genome of somatic cells, produce Asian yellow goat cloned embryos and viable kids, and whole cell intracytoplasmic injection is an efficient protocol for goat somatic cell nuclear transfer.  相似文献   

16.
牛卵母细胞体外成熟的研究   总被引:4,自引:0,他引:4  
牛卵母细胞的成熟过程中,包括细胞膜、细胞质、细胞核的成熟。其中细胞质的成熟最为复杂。线粒体、皮质颗粒数量的变化和位移,脂滴类型的变化和形态改变,空泡形态学的变化等是鉴别卵母细胞幼稚、成熟和老化的重要特征。透明带随着培养而外侧疏松,内侧致密,母卵细胞膜上伸出的微绒毛为膨大泡状和细长毛状两种。在培养14小时后颗粒细胞与透明带脱离联系。根据综合指标判定,18小时这前为成熟生长期,18 ̄26小时为成熟期,  相似文献   

17.
This study was conducted to evaluate the nuclear remodeling patterns and the developmental potential of porcine fetal fibroblast nuclear transfer embryos (NTs) following the maturational age of recipient oocytes and activation conditions. Donor cells were transferred into the enucleated oocytes that were matured for 36 or 44h. Electrofused embryos were cultured in PZM-3 for 6 days without activation treatment (EF group). Some of these embryos were additionally activated by electric stimulus (ES; EF+ES group) or a combination of ES and DMAP (EF+ES+D group) before culture. The reconstituted embryos were fixed 2.5h after fusion to evaluate the nuclear remodeling patterns. The nuclear remodeling pattern of NTs reconstituted with 44 h-matured recipients showed a tendency to form a pronucleus-like structure, while that of NTs reconstituted with 36 h-matured recipients showed a tendency to undergo a premature chromosome condensation (PCC) and form one set of chromatin clump. In EF+ES+D group, blastocyst development was significantly increased regardless of maturational age of recipient oocytes (P<0.05). The result indicates that additional activation treatment is necessary to induce the activation of embryos reconstituted with 36 h-matured recipients, and treatment with the combination of electrical stimuli and DMAP could enhance the blastocyst formation rate of porcine NTs reconstituted with both 36 h- and 44 h-matured recipient oocytes.  相似文献   

18.
牛体外受精的程序及超微结构研究   总被引:12,自引:0,他引:12  
孙青原  秦鹏春 《动物学报》1996,42(3):303-308
牛体外成熟卵母细胞体外受精后3小时精子入卵,8小时原核形成,24小时的核多到卵中央。精子发生顶体反应的部位主要在透明表面,方式是顶体外膜自身囊经,发生顶体反应的粗子可斜向或垂直穿过透明带。卵丘细胞可吞噬大量精子,在阻多精受精中发挥重要作用。高尔基得合体,线料体、环状片层和滑面内质网等在原核周围形成细胞器集团。牛体外受精卵的雌雄原结合比体内受精的要延迟,胞吐到卵周隙中的皮质颗粒内容物扩散不完全。  相似文献   

19.
Li GP  Tan JH  Sun QY  Meng QG  Yue KZ  Sun XS  Li ZY  Wang HB  Xu LB 《Cloning》2000,2(1):45-52
Nuclear transplantation in the pig is more difficult than in other domestic animals and only one embryonic nuclear transplantation (NT) pig has been born to date. In this study, reconstituted porcine embryos were produced by electrofusion of blastomeres from in vivo four-cell embryos to enucleated in vivo or in vitro matured (IVM) oocytes. Nuclear transfer using cumulus cells as nuclear donors was also conducted. When blastomeres were used as donors, the electrofusion rate was significantly higher in oocytes matured in vivo (91.5%) than in those matured in vitro (66.1%) (p < 0.01). After fusion, the NT embryos reconstituted from in vivo matured oocytes developed to blastocysts at a rate of 10.3% after culture in rabbit oviducts for up to 5 days, while only 5.9% of the NT embryos reconstructed from in vitro matured oocytes developed to blastocyst stage. Electrofusion rate of cumulus cell nuclei with enucleated IVM oocytes was lower (47.6%) and only 1.5% (2/136) of the reconstituted eggs developed in vitro to morula stage, and 1.9% developed to blastocysts when cultured in the ligated rabbit oviducts. Transfer of 94 embryos reconstructed by blastomere NT with in vivo matured oocytes to five synchronous recipients resulted in the birth of two cloned piglets. No piglet was born following transfer to two recipients of embryos (n = 39) derived from NT with in vitro matured oocytes. The results demonstrate that in vivo matured oocytes are better recipients than those matured in vitro for pig cloning.  相似文献   

20.
Development of enucleated mouse oocytes reconstituted with embryonic nuclei   总被引:11,自引:0,他引:11  
The chromosomes of mouse oocytes at telophase of the first meiotic division were removed using micromanipulation and differential interference microscopy. The enucleated oocytes were used as recipients for nuclear transplantation, after culture for 4-6 h. The newly synthesized proteins of the enucleated oocytes showed the same pattern as those of secondary oocytes matured in vivo. When the enucleated oocytes received a nucleus from late 2- and 8-cell embryos, or a cell from the inner cell mass (ICM) of blastocysts, 23, 4 and 10%, respectively, of reconstituted embryos developed to blastocysts. After transfer to recipient females, live young were produced from the reconstituted eggs that received a nucleus from late 2-cell embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号