首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our and other previous studies have shown that telophase enucleation is an efficient method for preparing recipient cytoplasts in nuclear transfer. Conventional methods of somatic cell nuclear transfer either by electro-fusion or direct nucleus injection have very low efficiency in animal somatic cell cloning. To simplify the manipulation procedure and increase the efficiency of somatic cell nuclear transfer, this study was designed to study in vitro and in vivo development of Asian yellow goat cloned embryos reconstructed by direct whole cell intracytoplasmic injection (WCICI) into in vitro matured oocytes enucleated at telophase II stage. Our results demonstrated that the rates of cleavage and blastocyst development of embryos reconstructed by WCICI were slightly higher than in conventional subzonal injection (SUZI) group, but no statistic difference (P > 0.05) existed between these two methods. However, the percentage of successful embryonic reconstruction in WCICI group was significantly higher than that in SUZI group (P < 0.05). After embryo transfer at 4-cell stage, the foster in both groups gave birth to offspring. Therefore, the present study suggests that the telophase ooplasm could properly reprogram the genome of somatic cells, produce Asian yellow goat cloned embryos and viable kids, and whole cell intracytoplasmic injection is an efficient protocol for goat somatic cell nuclear transfer.  相似文献   

2.
It is the point at issue in intraspecies nuclear transfer whether quiescence is necessary for development of nuclear transfer reconstructed embryos. In the interspecies nuclear transfer, some reports have proved that quiescent cell is able to support preimplantation development of the interspecies reconstructed embryos. Are non-quiescent cells able to support preimplantation development of the interspecies reconstructed embryos? We used non-quiescent somatic cells from C57BL/6 mice and giant pandas as donors to transfer into enucleated rabbit oocytes. After electrofusion (the electrofusion rates were 62.2% and 71.6%, respectively) and electrical activation, 5.1% of those mouse-rabbit reconstructed embryos developed to blastocyst in vitro, and 4.2% of panda-rabbit reconstructed embryos developed to blastocyst after transferring into ligated rabbit oviduct. These results indicate that non-quiescent cell from C57BL/6 mouse and giant panda could be dedifferentiated in enucleated rabbit oocytes and support early embryo development.  相似文献   

3.
未经休眠处理的体细胞用于异种核移植   总被引:1,自引:0,他引:1  
自“多莉”诞生以来,在全世界掀起了一场体细胞克隆的浪潮,许多体细胞克隆动物,如小鼠、山羊、牛、猪等纷纷问世。围绕体细胞克隆的供体细胞周期问题,学术界存在两种不同的观点,一是Wilmut等认为体细胞必须经过休眠处理,使细胞停滞在G0/G1期,或者采用以G0/G1期为主的活体细胞作为供体,这是克隆成功的关键,这一方面的报道已有很多。第二是Cibelli等认为不必对细胞作  相似文献   

4.
Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos   总被引:16,自引:0,他引:16  
Somatic cell nuclei of giant pandas can dedifferentiate in enucleated rabbit ooplasm, and the reconstructed eggs can develop to blastocysts. In order to observe whether these interspecies cloned embryos can implant in the uterus of an animal other than the panda, we transferred approximately 2300 panda-rabbit cloned embryos into 100 synchronized rabbit recipients, and none became pregnant. In another approach, we cotransferred both panda-rabbit and cat-rabbit interspecies cloned embryos into the oviducts of 21 cat recipients. Fourteen recipients exhibited estrus within 35 days; five recipients exhibited estrus 43-48 days after embryo transfer; and the other two recipients died of pneumonia, one of which was found to be pregnant with six early fetuses when an autopsy was performed. Microsatellite DNA analysis of these early fetuses confirmed that two were from giant panda-rabbit cloned embryos. The results demonstrated that panda-rabbit cloned embryos can implant in the uterus of a third species, the domestic cat. By using mitochondrial-specific probes of panda and rabbit, we found that mitochondria from both panda somatic cells and rabbit ooplasm coexisted in early blastocysts, but mitochondria from rabbit ooplasm decreased, and those from panda donor cells dominated in early fetuses after implantation. Our results reveal that mitochondria from donor cells may substitute those from recipient oocytes in postimplanted, interspecies cloned embryos.  相似文献   

5.
Effect of telophase enucleation on bovine somatic nuclear transfer   总被引:5,自引:0,他引:5  
Liu JL  Wang MK  Sun QY  Xu Z  Chen DY 《Theriogenology》2000,54(6):989-998
Telophase enucleation has been proven to be an efficient method for preparing recipient cytoplasts in bovine embryonic nuclear transfer (2, 11). This research was designed to study in vitro development of bovine oocytes containing transferred somatic cell nuclei, reconstructed by using enucleated in vitro-matured oocytes 32 h of age at telophase II stage as recipient cytoplasts, compared with those 24 h of age at metaphase II stage. Two protocols for donor cell injection were adopted, i.e., subzonal injection (SUZI) and intracytoplasmic injection (ICI). Bovine oviduct epithelial cells (BOECs) and bovine cumulus cells (BCCs) from an adult cow were used as nuclear donors for these experiments. In SUZI groups, the fusion rate of donor cells, both BOECs and BCCs, with MII enucleated oocytes were higher than those with TII enucleated oocytes (54% vs. 41% and 53% vs. 39%, respectively; P<0.05), but the development rates to morula plus blastocyst stage in MII groups were lower than those in TII groups (22% vs. 39% and 21% vs. 41%, respectively; P<0.05). In ICI groups, about 26% of enucleated MII oocytes injected with BOECs or BCCs cleaved and only small parts of them developed to blastocyst stage (4% and 3%, respectively; P>0.05). When BOECs or BCCs were intracytoplasmically injected into oocytes enucleated at TII stage, no blastocyst was formed in either donor cell group and no cleavage occurred in BOEC group. Our data demonstrated that telophase enucleation is beneficial to early embryo development when bovine somatic nuclei are transferred by subzonal injection. However, it is harmful when donor cells are directly injected into the cytoplast of the enucleated oocytes.  相似文献   

6.
The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the best, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined with in vivo development in ligated rabbit oviduct, achieved higher blastoeyst development than in vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA (  相似文献   

7.
The technique of interspecies somatic cell nuclear transfer, in which interspecies cloned embryos can be reconstructed by using domestic animal oocytes as nuclear recipients and endangered animal or human somatic cells as nuclear donors, can afford more opportunities in endangered animal rescue and human tissue transplantation, but the application of this technique is limited by extremely low efficiency which may be attributed to donor nucleus not fully reprogrammed by xenogenic cytoplasm. In this study, goat fetal fibroblasts (GFFs) were used as nuclear donors, in vitro-matured sheep oocytes were used as nuclear recipients, and a two-stage nuclear transfer procedure was performed to improve the developmental ability of goat-sheep interspecies clone embryos. In the first stage nuclear transfer (FSNT), GFFs were injected into the ooplasm of enucleated sheep metaphase-II oocytes, then non-activated reconstructed embryos were cultured in vitro, so that the donor nucleus could be exposed to the ooplasm for a period of time. Subsequently, in the second stage nuclear transfer, FSNT-derived non-activated reconstructed embryo was centrifuged, and the donor nucleus was then transferred into another freshly enucleated sheep oocyte. Compared with the one-stage nuclear transfer, two-stage nuclear transfer could significantly enhance the blastocyst rate of goat-sheep interspecies clone embryos, and this result indicated that longtime exposure to xenogenic ooplasm benefits the donor nucleus to be reprogrammed. The two-stage nuclear transfer procedure has two advantages, one is that the donor nucleus can be exposed to the ooplasm for a long time, the other is that the problem of oocyte aging can be solved.  相似文献   

8.
Oh HJ  Kim MK  Jang G  Kim HJ  Hong SG  Park JE  Park K  Park C  Sohn SH  Kim DY  Shin NS  Lee BC 《Theriogenology》2008,70(4):638-647
The objective of the present study was to investigate whether nuclear transfer of postmortem wolf somatic cells into enucleated dog oocytes, is a feasible method to produce a cloned wolf. In vivo-matured oocytes (from domestic dogs) were enucleated and fused with somatic cells derived from culture of tissue obtained from a male gray wolf 6h after death. The reconstructed embryos were activated and transferred into the oviducts of naturally synchronous domestic bitches. Overall, 372 reconstructed embryos were transferred to 17 recipient dogs; four recipients (23.5%) were confirmed pregnant (ultrasonographically) 23-25 d after embryo transfer. One recipient spontaneously delivered two dead pups and three recipients delivered, by cesarean section, four cloned wolf pups, weighing 450, 190, 300, and 490g, respectively. The pup that weighed 190g died within 12h after birth. The six cloned wolf pups were genetically identical to the donor wolf, and their mitochondrial DNA originated from the oocyte donors. The three live wolf pups had a normal wolf karyotype (78, XY), and the amount of telomeric DNA, assessed by quantitative fluorescence in situ hybridization, was similar to, or lower than, that of the nuclear donor. In conclusion, the present study demonstrated the successful cloning of an endangered male gray wolf via interspecies transfer of somatic cells, isolated postmortem from a wolf, and transferred into enucleated dog oocytes. Therefore, somatic cell nuclear transfer has potential for preservation of canine species in extreme situations, including sudden death.  相似文献   

9.
The developmental potential of hybrid embryos produced by transferring panda or cat fibroblasts into nucleated rabbit oocytes was assessed. Both the panda-rabbit and the cat-rabbit hybrid embryos were able to form blastocysts in vitro. However, the rates of attaining the two-cell, four-cell, eight-cell, morula, or blastocyst stages for panda-rabbit hybrids were significantly greater than those of cat-rabbit hybrids (P<0.05). Transferring the rabbit fibroblasts into nucleated rabbit oocytes, 31.0% of the blastocyst rate was obtained, which was significantly higher than that of both the panda-rabbit and the cat-rabbit hybrid embryos (P<0.05). Whether or not the second polar body (PB2) was extruded from the one-cell hybrid embryos (both panda-rabbit and cat-rabbit hybrids) significantly affected their developmental capacity. Embryos without an extruded PB2 showed a higher capacity to develop into blastocysts (panda-rabbit: 19.2%; cat-rabbit: 4.3%), while embryos with extruded PB2 could only develop to the morula stage. The hybrid embryos formed pronucleus-like structures (PN) in 2-4 hr after activation, and the number of PN in one-cell embryos varied from one to five. Tracking of the nucleus in the egg after fusion revealed that the somatic nucleus could approach and aggregate with the oocyte nucleus spontaneously. Chromosome analysis of the panda-rabbit blastocysts showed that the karyotype of the hybrid embryos (2n=86) consisted of chromosomes from both the panda (2n=42) and the rabbit (2n=44). The results demonstrate that (1) it is possible to produce genetic hybrid embryos by interspecies nuclear transfer; (2) the developmental potential of the hybrid embryos is highly correlated to the donor nucleus species; and (3) the hybrid genome is able to support the complete preimplantation embryonic development of the hybrids.  相似文献   

10.
Birth of mice after nuclear transfer by electrofusion using tail tip cells   总被引:36,自引:0,他引:36  
Mice have been successfully cloned from cumulus cells, fibroblast cells, embryonic stem cells, and immature Sertoli cells only after direct injection of their nuclei into enucleated oocytes. This technical feature of mouse nuclear transfer differentiates it from that used in domestic species, where electrofusion is routinely used for nuclear transfer. To examine whether nuclear transfer by electrofusion can be applied to somatic cell cloning in the mouse, we electrofused tail tip fibroblast cells with enucleated oocytes, and then assessed the subsequent in vitro and in vivo development of the reconstructed embryos. The rate of successful nuclear transfer (fusion and nuclear formation) was 68.8% (753/1094) and the rate of development into morulae/blastocysts was 40.8% (260/637). After embryo transfer, seven (six males and one female; 2.5% per transfer) normal fetuses were obtained at 17.5-21.5 dpc. These rates of development in vitro and in vivo are not significantly different from those after cloning by injection (44.7% to morulae/blastocysts and 4.8% to term). These results indicate that nuclear transfer by electrofusion is practical for mouse somatic cell cloning and provide an alternative method when injection of donor nuclei into recipient oocytes is technically difficult.  相似文献   

11.
通过人-牛异种核移植技术获得异种克隆囊胚, 便于在不消耗人类卵母细胞的情况下从异种克隆胚中分离出人类干细胞。通过透明带下注射法将人胎儿成纤维细胞和牛耳成纤维细胞分别注入去核牛卵母细胞中构建异种和同种胚胎, 并比较两者之间的融合率、卵裂率、8-细胞发育率以及囊胚率。并对处于2-细胞、4-细胞、8-细胞、桑椹胚、囊胚阶段的异种克隆胚的线粒体DNA来源进行检测。结果表明, 异种克隆胚体外各个阶段的发育率均低于同种克隆胚, 尤其是8-细胞到囊胚阶段的发育率, 以及囊胚率都显著低于同种克隆胚(P<0.05)。异种克隆胚在2-细胞到桑椹胚阶段检测到人、牛线粒体DNA共存, 囊胚阶段只检测到牛线粒体DNA。结果表明: 牛卵母细胞可以重编程人胎儿成纤维细胞, 完成异种克隆胚植入前的胚胎发育, 异种克隆胚由于核质相互作用的不谐调, 影响其发育能力, 使其囊胚率显著低于同种克隆胚。牛线粒体DNA存在于植入前异种胚胎发育的各个阶段。异种克隆胚胎用于人类胚胎干细胞分离具有可行性。  相似文献   

12.
范勇  陈欣洁  王晓蔓  孙筱放 《生物磁学》2009,(20):3820-3822,3815
目的:探讨利用IVF废弃胚胎构建人体细胞克隆胚胎的发育潜能及其在人治疗性克隆应用的可能性。方法:收集2008年7-12月在广州医学院第三附属医院进行体外受精-胚胎移植周期中的多精受精胚胎和MII期体外受精失败卵母细胞,运用显微操作技术构建人体细胞克隆胚胎,观察胚胎发育情况。结果:多精受精胚胎为核移植受体的克隆胚胎能够发育到8-细胞期,受精失败MII期卵母细胞为核移植受体的克隆胚胎能够激活,但不能够卵裂。两种IVF废弃的胚胎构建的人体细胞克隆胚胎在去核成功率,注核成功率上无显著差异(P&gt;0.05),但卵裂率和8细胞率上具有显著差异(P&lt;0.05)。结论:多精受精胚胎比MII期体外受精失败卵母细胞更适合作为人核移植受体细胞。  相似文献   

13.
为提高绵羊体细胞核移植的效率,本研究采用一种新的去核方法—化学辅助去核法,对绵羊体外成熟的卵母细胞进行去核,研究了化学诱导剂秋水仙素的处理浓度、作用时间、卵母细胞的成熟时间对去核效果及重构胚发育的影响。结果表明:1)卵母细胞在0.4μg/mL的秋水仙素溶液中分别孵育0.5h和1h,胞质突起率和去核率没有显著的差异,突起率可高达85.4%,去核率达到100%;2)0.2μg/mL或0.4μg/mL秋水仙素溶液将卵母细胞处理0.5h,对去核效果没有显著影响;3)对于体外成熟18~23h的卵母细胞,随着成熟时间的延长,盲吸法的去核率降低,但没有影响秋水仙素诱导胞质突起的比率和去核率;4)两种去核方法对重构胚的发育没有产生显著影响,但成熟21~23h卵母细胞重构胚囊胚的发育率显著高于成熟18~20h卵母细胞重构胚囊胚的发育率。综上所述,本试验优化了绵羊卵母细胞化学辅助的去核程序,利用化学辅助去核法对高卵龄的绵羊卵母细胞进行去核,提高了去核率和重构胚的体外发育率。  相似文献   

14.
Successful cloning by nuclear transfer has been reported with somatic or embryonic stem (ES) cell nucleus injection into enucleated mouse metaphase II oocytes. In this study, we enucleated mouse oocytes at the germinal vesicle (GV) or pro-metaphase I (pro-MI) stage and cultured the cytoplasm to the MII stage. Nuclei from cells of the R1 ES cell line were injected into both types of cytoplasm to evaluate developmental potential of resulting embryos compared to MII cytoplasmic injection. Immunocytochemical staining revealed that a spindle started to organize 30 min after nucleus injection into all three types of cytoplasm. A well-organized bipolar spindle resembling an MII spindle was present in both pro-MI and MII cytoplasm 1 h after injection with ES cells. However, in the mature GV cytoplasm, chromosomes were distributed throughout the cytoplasm and a much bigger spindle was formed. Pseudopronucleus formation was observed in pro-MI and MII cytoplasm after activation treatment. Although no pronucleus formation was found in GV cytoplasm, chromosomes segregated into two groups in response to activation. Only 8.1% of reconstructed embryos with pro-MI cytoplasm developed to the morula stage after culture in CZB medium. In contrast, 53.5% of embryos reconstructed with MII cytoplasm developed to the morula/blastocyst stage, and 5.3% of transferred embryos developed to term. These results indicate that GV material is essential for nucleus remodeling after nuclear transfer.  相似文献   

15.
Cloning methods are now well described and becoming routine. Yet the frequency at which live cloned offspring are produced (as a percentage of starting one-cell embryos) remains below 5% irrespective of nucleus donor species or cell type. In considering the cause(s) of this universally low efficiency, features common to all cloning protocols are strong candidates. One such shared feature is enucleation; the donor nucleus is inserted into an enucleated cytoplast (ooplast). However, it is not known whether a nucleus-free metaphase II oocyte is developmentally impaired other than by virtue of lacking chromosomes, or if in nuclear transfer protocols, enucleation removes factors necessary to reprogram the incoming nucleus. We have here investigated the role of enucleation in nuclear transfer. Three hours after the injection of cumulus cell nuclei into non-enucleated oocytes, 65% contained two distinct metaphase spindles, with the remainder exhibiting a single spindle in which oocyte-derived and nucleus donor chromosomes were mixed. However, staining only one hour after donor nucleus insertion revealed that most had two discrete spindles. In the absence of staining, the donor nucleus spindle was not visible. This provided a straightforward way to identify and select the oocyte-derived metaphase chromosomes 1 h after donor nucleus microinjection, and 34-41% cloned embryo developed to the morulla-blastocyst stage following Sr(2+)-induced activation. Of these, two (1% of starting one-cell embryos) developed to term, an efficiency which is comparable to that obtained for controls (6 clone; 1-2%) in which enucleation preceded nuclear transfer. In conclusion, the timing of the removal of oocyte chromosomes before or after injection of somatic nucleus had no effect on cloned embryo development. These findings argue that neither oocyte chromosome depletion per se, nor the potential removal of "reprogramming" factors during enucleation explain the low efficiency of nuclear transfer cloning.  相似文献   

16.
The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of intenpecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the best, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined within vim development in ligated rabbit oviduct, achieved higher blastocyst development thanin vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA (mtDNA) was shown to exist in the intenpecies reconstructed blastocyst. The data suggest that (i) the ability of ooplasm to dedifferentiate somatic cells is not speciesspecific; (ii) there is compatibility between intenpecies somatic nucleus and ooplasm during early development of the reconstructed egg.  相似文献   

17.
Cloned calves from chromatin remodeled in vitro   总被引:5,自引:0,他引:5  
We have developed a novel system for remodeling mammalian somatic nuclei in vitro prior to cloning by nuclear transplantation. The system involves permeabilization of the donor cell and chromatin condensation in a mitotic cell extract to promote removal of nuclear factors solubilized during chromosome condensation. The condensed chromosomes are transferred into enucleated oocytes prior to activation. Unlike nuclei of nuclear transplant embryos, nuclei of chromatin transplant embryos exhibit a pattern of markers closely resembling that of normal embryos. Healthy calves were produced by chromatin transfer. Compared with nuclear transfer, chromatin transfer shows a trend toward greater survival of cloned calves up to at least 1 mo after birth. This is the first successful demonstration of a method for directly manipulating the somatic donor chromatin prior to transplantation. This procedure should be useful for investigating mechanisms of nuclear reprogramming and for making improvements in the efficiency of mammalian cloning.  相似文献   

18.
Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan < 100 animals) were electrofused with enucleated oocytes from domestic cows. Twelve percent of the reconstructed oocytes developed to the blastocyst stage, and 18% of these embryos developed to the fetal stage when transferred to surrogate mothers. Three of the fetuses were electively removed at days 46 to 54 of gestation, and two continued gestation longer than 180 (ongoing) and 200 days, respectively. Microsatellite marker and cytogenetic analyses confirmed that the nuclear genome of the cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.  相似文献   

19.
Cloning mammals by somatic cell nuclear transfer entails the replacement of oocyte chromosomes with the nucleus of a somatic cell. A major step in this technique is to efficiently produce large batches of enucleated oocytes, a process that requires considerable micromanipulation skills and expensive equipments. Here, a simple, fast, and efficient method of manual oocyte enucleation was introduced that can be adopted in every laboratory with the minimum equipments. Common laboratory glass pipettes were pulled on the flame of a burner and then used for manual bisection or enucleation of sheep and goat zona-free oocytes by passing them through the discontinuous cutting border of culture medium and mineral oil. The described techniques showed a certain efficiency to conveniently bisect or enucleate large batches of sheep, and goat oocytes being pre-treated with demecolcine. The method may be straightforward for simple manipulation of oocytes of other species and for development of automated cloning methods as well.  相似文献   

20.
Ohi S  Hosaka K  Ohkawa M  Sato K 《Human cell》2001,14(4):317-322
We examined whether metaphase nuclei could be used as nuclear donors in nuclear transfer in mice. The reconstructed embryos were developed to fetuses in both the metaphase-nuclear transfer and the G1-nuclear transfer. We also performed enucleation of oocytes following nuclear injection (injection-enucleation method) using microinjection method with a piezo-driven micromanipulator in order to produce the cloned murine fetuses. We found that this method could shorten time for manipulation in comparison with the conventional method performing nuclear injection following enucleation of oocytes (enucleation-injection method). We produced successfully cloned fetuses by the injection-enucleation method. Furthermore, there was no difference of developmental efficiency in reconstructed embryos from between B6D2F1 and ddY strain as oocyte donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号