首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
以游动放线菌(Actinoplanes)BCLP-016为出发菌株,采用常压室温等离子体(ARTP)诱变技术对其孢子进行处理,并将三个不同时间处理的孢子悬液混合。稀释涂布后,根据菌株菌落形态挑取部分单菌落进行初筛,经发酵复筛后,筛选得到了一株雷帕霉素高产菌株ARTP-039,其雷帕霉素的产量可达到369.39mg/L,较出发菌株BCLP-016的产量256.86 mg/L,提高了43.81%。以筛选出的ARTP-039高产菌为出发菌株,进行传统的紫外诱变,选取高、中、低三个致死率相对应的时间对其孢子悬液进行处理,并基于核糖体工程的理论选取了链霉素、庆大霉素、利福平、氯霉素和红霉素五种抗性物质,进行抗性初筛。发酵复筛后,最终筛选得到了一株雷帕霉素高产菌株St8+Gen6+Rif9+Chl3+Er4-015,该菌株同时具有五种抗性。该菌株的摇瓶实验结果表明,发酵7d后,其雷帕霉素的产量可达到589.79mg/L,较出发菌株BCLP-016的产量,提高了129.61%,且其遗传稳定性良好。  相似文献   

2.
【目的】通过诱变筛选技术选育阿维菌素高产突变株,对其发酵培养基进行响应面优化,提高阿维菌素产量。【方法】采用常压室温等离子体(ARTP)诱变技术,结合链霉抗性和卡那霉素抗性筛选法及96深孔板高通量筛选法,筛选阿维菌素高产株。在单因素实验的基础上,应用响应面分析法对其发酵培养基进行优化,最后确定最佳培养基配方。【结果】获得一株遗传性状稳定的阿维菌素高产株K-1A6,其阿维菌素产量达到4.22 g/L,比出发菌株9-39提高了23.4%,在最佳培养基中阿维菌素产量达到5.36 g/L,较优化前提高了27.01%。【结论】通过对阿维链霉菌9-39菌株进行ARTP诱变筛选及发酵培养基优化研究能显著提高阿维菌素的产量。  相似文献   

3.
【背景】厦门霉素A是厦门链霉菌(Streptomyces xiamenensis) 318菌株的主要次级代谢产物,具有显著的抗纤维化活性及药用潜力。但野生型菌株中厦门霉素A的产量仅有14 mg/L,其生产水平亟待提升。【目的】通过随机诱变-抗性标记筛选获得高产菌株并进行培养基优化,以提高厦门霉素A的产量。【方法】在厦门霉素A的生物合成基因簇后融合一个抗性基因,用于报告整个基因簇的表达水平。对构建的基因工程菌株进行常压室温等离子体(atmospheric and room temperature plasma,ARTP)诱变,从抗性水平高的突变菌株中筛选高产菌株,并通过培养基优化,使厦门霉素A产量显著提升。【结果】构建携带卡那霉素抗性标记的产厦门霉素A的工程菌MT-XN作为出发菌株,对该菌株进行一轮ARTP诱变,使用90 mg/L卡那霉素筛选,得到了厦门霉素A产量为101.7 mg/L的突变菌株MA-8。进一步通过响应面法优化培养基配方,在最佳培养基中MA-8菌株产生的厦门霉素A达到134.2 mg/L,较野生型菌株提高了845.1%。【结论】采用随机诱变-报告基因筛选系统,可快速筛选出厦门霉素A产量大幅提升的高产菌株,为后续的药物开发奠定良好的基础。  相似文献   

4.
目的:获得博安霉素高产菌株,同时比较了铜蒸汽激光与妥布霉素抗性及二者复合诱变的选育效果。方法:采用铜蒸汽激光辐照30 min与妥布霉素100 r/m L抗性处理及其复合诱变选育博安霉素产生菌轮枝链霉菌(S.verticillus)B-31。结果:在复合诱变组中,获得一株高产突变株GB-160,经发酵罐应用后,发酵单位较出发菌株提高1.5倍,并且遗传性能稳定。结论:该方法能有效获得抗生素高产优质菌株。在医药生物工程中,具有较高的实用价值,为其它药物微生物选育提供借鉴。  相似文献   

5.
雷帕霉素是具有很好的抗真菌、免疫抑制、抗肿瘤等活性的微生物次级代谢产物,可由吸水链霉菌(Streptomyces hygroscopicus)发酵产生。由于传统诱变育种的菌株产量较低,不能满足工业生产的需求。为了找到突破传统育种瓶颈的技术方法。本研究通过建立该菌株的遗传操作体系、构建表达载体、建立发酵、提取和检测等的研究方法,对传统诱变菌株(S.hygroscopicus17-1)进行遗传改造。首先,以整合型载体pSET152为出发载体,构建了含有自身启动子的rapG调控基因表达载体,建立并优化了该菌株的遗传操作系统,通过大肠杆菌与链霉菌属间接合转移的方法成功将rapG整合至原菌株基因组上,获得了该基因的多拷贝菌株S.hygroscopicus17-Gp。采用高压液相色谱和质谱等方法,检测分析了S.hygroscopicus17-1与S.hygroscopicus17-Gp发酵液中雷帕霉素的产量。结果表明S.hygroscopicus17-Gp发酵液中雷帕霉素的产量比原菌株提高了约40%,这为后期进行相关机制和产量提高的理论与实践研究奠定了基础。  相似文献   

6.
常压室温等离子体(ARTP)诱变及高通量筛选那西肽高产菌株   总被引:2,自引:0,他引:2  
采用新型常压室温等离子体(ARTP)诱变活跃链霉菌(Streptomyces actuosu),并应用抑菌圈和48孔板培养方法高通量筛选高产那西肽菌株。研究表明抑菌圈径的大小与48孔板效价之间以及48孔板效价与摇瓶效价之间均有较好的相关性,系数R分别达到0.534和0.896。通过多轮ARTP诱变及高通量筛选最终获得了3株相对效价提高50%以上的遗传性能稳定的突变株。ARTP诱变技术作为获得那西肽高产菌株的有效途径,与传统摇瓶发酵筛选相比,48孔板及抑菌圈法能显著提高那西肽高产菌株的筛选效率。  相似文献   

7.
旨在建立一种能够快速便捷的诱变选育高产DHA菌株的方法。出发菌株Schizochytrium sp.ATCC 20888悬浮液经过常压室温等离子体(ARTP)处理后,涂布到2,2’-联吡啶平上板培养。将所得的突变菌株摇瓶发酵培养,通过磷酸香草醛油脂快速检测法和气相色谱分析从突变菌株中筛选得到DHA高产菌株。结果表明,裂殖壶菌诱变选育条件为ARTP为处理时间15 s,气量10 L/min,电功率100 W;2,2’-联吡啶浓度为100μmol/L。通过该方法可以获得高产DHA的菌株。其中D32菌株DHA生产能力提升显著,比初始菌株提升了29.8%,DHA产量达到7.31g/L。D32菌株与出发菌株相比,主要的饱和脂肪酸含量显著下降(P0.005),而不饱和脂肪酸含量显著增加(P0.005)。经5次传代后性状稳定,本方法快捷高效,同时也为其他多不饱和脂肪的诱变选育方法提供参考。  相似文献   

8.
研究了不同发酵条件对雷帕霉素产量的影响。结果显示在最优条件下,进行了100L发酵罐的发酵试验,发酵190-200h雷帕霉素的产量为1200mg/L,产量较优化前提高一倍,达到了工业化生产的要求,为进一步放大生产奠定了基础。  相似文献   

9.
旨在诱变选育L-异亮氨酸高产菌,并探索突变株最佳发酵条件。利用传统化学诱变结合常压室温等离子体生物诱变体系对实验室保藏的Brevibacterium flavum I-12进行逐级诱变,选育2-噻唑丙氨酸(2-TA)和磺胺胍(SG)高抗性和在琥珀酸平板上能快速生长的突变菌株。随后,在单因素实验的基础上,利用响应面设计优化出目的突变株摇瓶发酵培养基组分的最佳参数水平。结果显示,经过一系列诱变和筛选,成功选育出一株在40 g/L的2-TA和5 g/L的SG,且以琥珀酸为唯一碳源的培养基上快速生长突变株,命名为B. flavum TA-6,该菌株产酸达26.2±0.5 g/L,比出发菌株提高了44.75%,而副产物L-缬氨酸和L-亮氨酸积累量明显降低。经响应面法优化发酵条件后,突变株产酸可达27.8±0.5 g/L,比优化前提高了6.1%。通过传统化学诱变结合ARTP生物诱变体系,成功选育出一株杂酸降低的L-异亮氨酸高产菌TA-6,该菌株具有潜在生产应用价值。  相似文献   

10.
研究了不同发酵条件对雷帕霉素产量的影响.结果显示在最优条件下,进行了100 L发酵罐的发酵试验,发酵190~200 h雷帕霉素的产量为1200 mg/L,产量较优化前提高一倍,达到了工业化生产的要求,为进一步放大生产奠定了基础.  相似文献   

11.
【目的】通过常压室温等离子体诱变技术选育L-精氨酸高产菌株,利用响应面设计探索突变菌株生产L-精氨酸的最佳发酵条件。【方法】采用常压室温等离子体生物诱变系统对实验室保藏的Corynebacterium glutamicum GUI089进行系列诱变,选育L-高精氨酸和8-氮鸟嘌呤抗性菌株。在单因子实验的基础上,应用Plackett-Burman设计从7个因素中筛选出对L-精氨酸合成具有显著效应的(NH4)2SO4、葡萄糖和尿素3个因素。基于上述结果,进一步采用响应面设计优化出主要影响因素的最佳参数水平。【结果】经过一系列的诱变和筛选,选育出一株L-高精氨酸(15 g/L)和8-氮鸟嘌呤(0.7 g/L)抗性菌株,并将此菌株命名为C.glutamicum ARG 3-16。此菌株的L-精氨酸产量比出发菌株提高了49.79%,且发酵液中杂酸的浓度明显降低,特别是L-脯氨酸、L-谷氨酸和L-缬氨酸。在经响应面优化后的最佳发酵条件下,L-精氨酸的产量达到39.72±0.75 g/L,比优化前提高了10.49%。【结论】通过常压室温等离子体诱变技术成功选育出一株L-精氨酸高产菌株,利用响应面法有效地优化了发酵条件,实验结果表明突变株ARG 3-16具有潜在的生产应用价值。  相似文献   

12.
利福霉素SV毒性低、疗效高、抗菌谱广,主要由地中海拟无枝酸菌发酵生产,其发酵过程属于耗氧发酵,供氧直接影响产物形成。为减少发酵过程氧限制影响,进一步提高利福霉素发酵产量,通过构建定向氧限制模型,将常温常压等离子体诱变和无水亚硫酸钠氧限制筛选模型相结合,建立了利福霉素生产菌株24孔板快速培养的高通量筛选方法,高效选育出能够耐受低氧环境的利福霉素SV高产菌株NSMXG-M126,发酵代谢状态参数变化显示,该高产菌株具有更好的氧亲和力。同样的供氧条件下,与对照相比表现出较快的菌体生长速率和利福霉素SV的快速合成能力。在低供氧情况下发酵单位达到7839mg/L,较出发菌株提高48%,表明耐受低氧的突变菌株具有更高的利福霉素SV生产效率。  相似文献   

13.
灰树花菌株的复壮及常压室温等离子体诱变   总被引:1,自引:1,他引:0  
【背景】实验室所用灰树花菌株系长期继代培养,易出现菌株退化。【目的】通过菌株复壮的方法实现菌株的生物学活性及性状的恢复,并借助高效诱变仪对菌株实施诱变,以期得到活性更高、遗传稳定的诱变株。【方法】分别以PDA加富培养基和PDA-板栗壳培养基为培养基质,采用尖端菌丝分离法进行菌株复壮,得到回复菌株原有的生物学活性及性状的复壮株P-2,为了进一步提高菌株的高产性能,利用常压室温等离子体(atmosphericroomtemperatureplasma,ARTP)诱变技术作用于复壮株P-2菌丝体,最终筛选到一株性能优良、遗传稳定性高的诱变株b-35。【结果】复壮后的菌株P-2菌丝干重和多糖含量分别达到1.18%和19.01%,较出发株分别提高35.17%和35.11%,通过发酵罐验证菌株的发酵周期由48h缩短至32h,菌株发酵活性及效率明显提高。诱变株b-35菌丝干重和多糖含量分别达到1.56%和25.07%,较复壮株P-2分别提高了40.15%和39.33%。【结论】ARTP诱变方法易操作、无污染且诱变效率高,是获得灰树花高产菌株的重要方式。  相似文献   

14.
旨在选育L-异亮氨酸高产大肠杆菌.以大肠杆菌K12(Met-)为出发菌株,经常温常压等离子体(ARTP)诱变,通过微生物高通量液滴培养系统(MMC)筛选,以α-氨基丁酸(α-AB)抗性为筛选标记,得到一株高产L-异亮氨酸的突变菌株大肠杆菌NXU12,并对其遗传稳定性进行了研究.结果表明,出发菌株大肠杆菌K12(Met-...  相似文献   

15.
【目的】绿针假单胞菌GP72是一种植物根围促生细菌,其分泌的次级代谢产物2-羟基-吩嗪(2-OH-PHZ)具有广谱抗真菌活性,但其产量较低,不能满足农业生产的应用需求,因此需对GP72进行改造,从而提高产量。【方法】从GP72的野生株出发,首次将2-OH-PHZ合成途径的限制性因子Phz O用绿色荧光蛋白(GFP)替换,以一种新型的常压室温等离子体技术(Atmospheric and room temperature plasma,ARTP)进行诱变,通过酶标仪测定96孔板中突变株的荧光强度进行高通量筛选;最后将荧光强度高的菌株中绿色荧光蛋白(Green fluorescent protein,GFP)替换为Phz O以获得2-OH-PHZ高产突变株。【结果】经过五轮诱变后,获得一株荧光强度增加1.62倍的突变株,用phz O基因回替后,该突变株在KB培养基中摇瓶培养时2-OH-PHZ的产量为野生型的4.62倍。【结论】基于安全、高效ARTP诱变技术,并以GFP替换限制性因子作为标记进行高通量筛选,可以快速获得高产2-OH-PHZ的GP72突变株,克服了传统诱变育种方法筛选难度大、费时费力的不足,为其它微生物的育种提供了参考。  相似文献   

16.
17.
微生物是人类赖以生存的重要资源,为提高微生物的生产效率或者赋予其新的生物学功能,需要通过理化方法进行诱变或通过分子生物学技术对其进行定点突变。在目前的理化诱变方法中,常压室温等离子(atmospheric and room temperature plasma,ARTP)诱变技术具有操作简单、条件温和、安全性高、诱变快速等优点,成为倍受青睐的新方法。基于此,综述了ARTP诱变技术的原理及其在微生物诱变育种方面的应用,以期为选育性能优越的微生物菌种的诱变育种相关研究提供借鉴。  相似文献   

18.
[背景]洛蒙德链霉菌S015能生物合成具有广谱抗菌活性的吩嗪类化合物洛蒙真菌素。[目的]因S015菌株的洛蒙真菌素产量较低,将S015菌株经复合诱变育种和基因工程改造,提高洛蒙真菌素产量。[方法]建立洛蒙真菌素产生菌的高通量筛选方法,对出发菌株S0 15进行常压室温等离子体(atmospheric and room temperature plasma,ARTP)技术和紫外复合诱变,筛选得到高产菌株;并在高产菌株上敲除洛蒙真菌素的前体分支酸竟争途径中的关键基因trpE1、trpE2,再过表达全局调控基因afsR。[结果]利用洛蒙真菌素在紫外波长375 nm处的特征吸收峰,以及洛蒙真菌素浓度和375 nm处吸光度值的正相关关系,建立了基于24孔深孔板发酵和酶标仪快速检测的高通量筛选方法。经过6轮ARTP和紫外复合诱变及高通量筛选,从4 320株突变株中筛选得到遗传稳定的高产菌株M6,其洛蒙真菌素的产量为61.33 mg/L,是S015菌株的7.35倍;M6菌株的分支途径基因trpE1、trpE2双敲株的洛蒙真菌素产量为81.89 mg/L,是S015菌株的9.82倍;在该基因工程菌株中过表达全局调控基因afsR,产量为109.53 mg/L,是S015菌株的13.13倍。[结论]建立的高通量筛选方法可以有效筛选高产洛蒙真菌素的突变株,并且操作简单快速。通过ARTP和紫外复合诱变,结合高产株M6的基因工程改造,能进一步提升洛蒙真菌素的产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号