首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty-four birds of 43 species were caught at six localities in Colombia during the dry season in March 1998 and investigated for hematozoa by microscopic examination of stained blood films. Haemoproteus coatneyi, Plasmodium vaughani, Leucocytozoon sp., and microfilariae were identified. The overall prevalence of infection was 8%. Prevalences of infection for Haemoproteus spp., Plasmodium spp., Leucocytozoon spp., and microfilariae were 3%, 2%, 2%, and 3%, respectively. All hemosporidian infections encountered were of low intensity (< 1% of infected erythrocytes). The low prevalences and intensities of hemosporidian parasites in this study are in accord with other records from the Neotropics.  相似文献   

2.
During spring-summer 2003-2004, the avian community was surveyed for hemosporidian parasites in an oak (Quercus spp.) and madrone (Arbutus spp.) woodland bordering grassland and chaparral habitats at a site in northern California, a geographic location and in habitat types not previously sampled for these parasites. Of 324 birds from 46 species (21 families) sampled (including four species not previously examined for hemosporidians), 126 (39%) were infected with parasites identified as species of one or more of the genera Plasmodium (3% of birds sampled), Haemoproteus (30%), and Leucocytozoon (11%). Species of parasite were identified by morphology in stained blood smears and were consistent with one species of Plasmodium, 11 species of Haemoproteus, and four species of Leucocytozoon. We document the presence of one of the parasite genera in seven new host species and discovered 12 new parasite species-host species associations. Hatching-year birds were found infected with parasites of all three genera. Prevalence of parasites for each genus differed significantly for the entire sample, and prevalence of parasites for the most common genus, Haemoproteus, differed significantly among bird families. Among families with substantial sample sizes, the Vireonidae (63%) and Emberizidae (70%) were most often infected with Haemoproteus spp. No evidence for parasite between-genus interaction, either positive or negative, was found. Overall prevalence of hemosporidians at the northern California sites and predominance of Haemoproteus spp. was similar to that reported in most other surveys for the USA, Canada, and the Caribbean islands.  相似文献   

3.
When host species colonize new areas, the parasite assemblage infecting the hosts might change, with some parasite species being lost and others newly acquired. These changes would likely lead to novel selective forces on both host and its parasites. We investigated the avian blood parasites in the passerine bird community on the mid-Atlantic island of S?o Miguel, Azores, a bird community originating from continental Europe. The presence of haemosporidian blood parasites belonging to the genera Haemoproteus, Plasmodium, and Leucocytozoon was assessed using polymerase chain reaction. We found two Plasmodium lineages and two Leucocytozoon lineages in 11 bird species (84% of all breeding passerine species) on the island. These lineages were unevenly distributed across bird species. The Eurasian Blackbird (Turdus merula) was the key-host species (total parasite prevalence of 57%), harboring the main proportion of parasite infections. Except for Eurasian Blackbirds, all bird species had significantly lower prevalence and parasite diversity compared to their continental populations. We propose that in evolutionary novel bird communities, single species may act as key hosts by harboring the main part of the parasite fauna from which parasites "leak" into the other species. This would create very different host-parasite associations in areas recently colonized by hosts as compared to in their source populations.  相似文献   

4.
To test the hypothesis that migrants infected with blood parasites arrive on the northern coast of the Gulf of Mexico in poorer condition than uninfected birds, we examined 1705 migrant passerine birds representing 54 species of 11 families from 2 Gulf Coast sites for blood parasites. Three hundred and sixty (21.1%) were infected with 1 or more species of 4 genera of blood parasites. The prevalence of parasites was as follows: Haemoproteus spp. (11.7%), Plasmodium spp. (6.7%), Leucocytozoon spp. (1.3%), and Trypanosoma spp. (1.2%). Both prevalence and density of Haemoproteus spp. infection varied among species. We found no relationship of gender or age with the prevalence of Haemoproteus spp. infection or Plasmodium spp. infection, with the exception of the orchard oriole (Icterus spurius) for which older birds were more likely to be infected with Haemoproteus spp. than younger birds. We also found that scarlet tanagers and summer tanagers infected with species of Haemoproteus have lower fat scores than uninfected individuals and that rose-breasted grosbeaks and Baltimore orioles infected with Haemoproteus spp. have a smaller mean body mass than uninfected individuals. Blood parasites do seem to pose a physiological cost for Neotropical migrant passerines and may be important components of the ecology of these species.  相似文献   

5.
Seven of 28 passerine birds that died in captivity were positive for malarial parasites by polymerase chain reaction targeting the mitochondrial cytochrome b (cytB) and apicoplast ribosomal RNA (rRNA) genes. Each bird was infected with a single parasite lineage having a unique genotype. Apicoplast rRNA sequences were present both in Haemoproteus spp. and Plasmodium spp. and had typically high adenosine + thymidine content. Phylogenies for cytB and apicoplast rRNA sequences were largely congruent and supported previous studies that suggest that Plasmodium-Haemoproteus spp. underwent synchronous speciation with their avian hosts, interrupted by sporadic episodes of host switching. Apicoplast phylogeny further indicated that Haemoproteus spp. are ancestral to Plasmodium spp. All the 7 infected passerine birds had histologic lesions of malaria, and malarial parasites may have contributed to the death of at least 4 animals. These findings provide new genetic data on passerine hematozoa, including initial sequences of apicoplast DNA, and emphasize the relevance of parasite prevalence, evolutionary relationships, and host switching to modern management and husbandry practices of captive birds.  相似文献   

6.
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector-borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites ( Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon ) from these sites in two widespread species of African rainforest birds, the yellow-whiskered greenbul ( Andropadus latirostris , Pycnonotidae) and the olive sunbird ( Cyanomitra olivacea , Nectariniidae). Twenty-six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats ( Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea , as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.  相似文献   

7.
Tissue samples from 699 birds from three regions of Asia (Myanmar, India, and South Korea) were screened for evidence of infection by avian parasites in the genera Plasmodium and Haemoproteus. Samples were collected from November 1994 to October 2004. We identified 241 infected birds (34.0%). Base-on-sequence data for the cytochrome b gene from 221 positive samples, 34 distinct lineages of Plasmodium, and 41 of Haemoproteus were detected. Parasite diversity was highest in Myanmar followed by India and South Korea. Parasite prevalence differed among regions but not among host families. There were four lineages of Plasmodium and one of Haemoproteus shared between Myanmar and India and only one lineage of Plasmodium shared between Myanmar and South Korea. No lineages were shared between India and South Korea, although an equal number of distinct lineages were recovered from each region. Migratory birds in South Korea and India originate from two different migratory flyways; therefore cross-transmission of parasite lineages may be less likely. India and Myanmar shared more host species and habitat types compared to South Korea. Comparison between low-elevation habitat in India and Myanmar showed a difference in prevalence of haematozoans.  相似文献   

8.
We examined the prevalence and host fidelity of avian haemosporidian parasites belonging to the genera Haemoproteus, Leucocytozoon and Plasmodium in the central Philippine islands by sampling 23 bird families (42 species). Using species-specific PCR assays of the mitochondrial cytochrome b gene (471base pairs, bp), we detected infections in 91 of the 215 screened individuals (42%). We also discriminated between single and multiple infections. Thirty-one infected individuals harbored a single Haemoproteus lineage (14%), 18 a single Leucocytozoon lineage (8%) and 12 a single Plasmodium lineage (6%). Of the 215 screened birds, 30 (14%) presented different types of multiple infections. Intrageneric mixed infections were generally more common (18 Haemoproteus/Haemoproteus, 3 Leucocytozoon/Leucocytozoon, and 1 Plasmodium/Plasmodium) than intergeneric mixed infections (7 Haemoproteus/Leucocytozoon and 1 Haemoproteus/Leucocytozoon/Plasmodium). We recovered 81 unique haemosporidian mitochondrial haplotypes. These clustered in three strongly supported monophyletic clades that correspond to the three haemosporidian genera. Related lineages of Haemoproteus and Leucocytozoon were more likely to derive from the same host family than predicted by chance; however, this was not the case for Plasmodium. These results indicate that switches between host families are more likely to occur in Plasmodium. We conclude that Haemoproteus has undergone a recent diversification across well-supported host-family specific clades, while Leucocytozoon shows a longer association with its host(s). This study supports previous evidence of a higher prevalence and stronger host-family specificity of Haemoproteus and Leucocytozoon compared to Plasmodium.  相似文献   

9.
Blood smears from 259 birds of 12 species, representing four families of raptors, from New Jersey, Pennsylvania, Delaware, and Virginia were examined for blood parasites. Infected birds constituted 59.1% of the total. Birds were infected with one or more of the following genera of protozoa: Leucocytozoon (43.2%); Haemoproteus (21.6%); Plasmodium (1.2%); and Trypanosoma (1.2%). Blood culture of 142 raptors of 11 species for Trypanosoma revealed a prevalence of 41.5%. Plasmodium circumflexum is reported for the first time in Accipiter striatus, and Trypanosoma sp. in Buteo jamaicensis.  相似文献   

10.
Habitat alteration can disrupt host-parasite interactions and lead to the emergence of new diseases in wild populations. The cerrado habitat of Brazil is being fragmented and degraded rapidly by agriculture and urbanization. We screened 676 wild birds from three habitats (intact cerrado, disturbed cerrado and transition area Amazonian rainforest-cerrado) for the presence of haemosporidian parasites (Plasmodium and Haemoproteus) to determine whether different habitats were associated with differences in the prevalence and diversity of infectious diseases in natural populations. Twenty one mitochondrial lineages, including 11 from Plasmodium and 10 from Haemoproteus were identified. Neither prevalence nor diversity of infections by Plasmodium spp. or Haemoproteus spp. differed significantly among the three habitats. However, 15 of the parasite lineages had not been previously described and might be restricted to these habitats or to the region. Six haemosporidian lineages previously known from other regions, particularly the Caribbean Basin, comprised 50-80% of the infections in each of the samples, indicating a regional relationship between parasite distribution and abundance.  相似文献   

11.
Wood storks (Mycteria americana) are endangered throughout their breeding range in the United States. Because of this, researchers have had little opportunity to thoroughly examine the continental wood stork population for endoparasites. The blood protozoan Haemoproteus crumenium has been identified from several populations of wood storks in North America. However, there have been no reports of wood storks being infected with species of Plasmodium or Leucocytozoon. During 2003, 42 nestling wood storks were captured at sites in Georgia and 27 free-ranging wood storks were captured at postbreeding dispersal sites in Mississippi and Louisiana. Two thin blood smears were made from each bird, and they were examined for parasites. Haemoproteus crumenium was found in 5 wood storks (7.2%), whereas Leucocytozoon sp., Plasmodium sp., and microfilariae were not observed. Mean intensity of H. crumenium was 4.4 +/- 0.7 (SE) per 2,000 erythrocytes counted. All infected wood storks were subadult or adult and were from postbreeding dispersal sites in Mississippi.  相似文献   

12.
This study represents the first major survey of avian hematozoa from southern Africa and the only one dealing with blood parasites of vultures. Blood smears from 506 Rhodesian, Botswanan and South African vultures (Hooded, White-headed, Lappetfaced, Cape Griffon and Whitebacked Vultures) were examined for hematozoa. Haemoproteus janovyi sp. n. was observed in 35.2% of the vultures, Leucocytozoon toddi in 0.8%, Plasmodium fallax in 0.6%, Atoxoplasma sp. in 1.4% and microfilariae in 0.2%. Hematozoan prevalence increased with age of the vultures. Only 2 of 133 nestlings sampled during the dry season had patent parasitemias (L. toddi). Haemoproteid prevalence in immature vultures was depressed during the dry season, whereas it was stable throughout the year in adults. The only species which nests on cliffs (the Cape Griffon Vulture) did not harbor hematozoa whereas the other species which nest and roost in trees were infected with at least one hematozoan species.  相似文献   

13.
One group of commonly found parasites in birds, for which fitness consequences and effects on life history traits have been much debated are Haemosporidian blood parasites. In a long term study population of great reed warblers Acrocephalus arundinaceus in Sweden, previous studies have shown that the Haemosporidian blood parasites are in their chronic phase during the breeding season and that the fitness of infected and non‐infected birds are similar. In the present study, we quantified parasite intensity (parasitemia) in 718 adults great reed warblers sampled between 1987 and 1998 for the three most common parasite species; Haemoproteus payevskyi (lineage GRW1), Plasmodium ashfordi (GRW2) and Plasmodium relictum (GRW4). We verified that the q‐PCR method is accurately quantifying Haemoproteus payevskyi (GRW1) as it was highly correlated with the number of parasites seen under microscope. Frequency of mixed infections with two lineages was significantly higher than expected based on the prevalence of each of the three parasite lineages. The mean level of parasitemia was significantly different for the three lineages and individual birds had repeatable parasitemia levels between years. Females tended to have a higher parasitemia than males for all three parasite lineages combined. Females with higher GRW1 parasitemia tended to arrive later in spring to their breeding sites. There was a negative correlation between parasitemia and number of fledged offspring for GRW1, and a tendency for a negative correlation between GRW2 parasitemia and the proportion of recruiting offspring. Overall our results demonstrate that chronic Haemosporidian infections can have slight but significant effects on host life history traits, and therefore may act as important selective agents in wild bird populations.  相似文献   

14.
Thirty nine specimens of passerine birds belonging to 19 species and eight families were investigated by blood smear technique in four localities of Southern Turkmenistan in 3-18 August 1991. The overall prevalence of infection was 59%. Protists from the orders Haemosporida (genera Haemoproteus, Plasmodium, Leucocytozoon), Kinetoplastida (Trypanosoma), and Adeleida (Hepatozoon), as well as Microfilaria were found. Haemoproteids (the prevalence of infection is 44%), leucocytozoids (23%), malarial parasites (13%) and trypanosomes (13%) were most frequently recorded. Only low chronic infections (< 1% of infected cells for the great majority of intracellular parasites, and a few trypanosomes and Microfilaria in each blood smear) were seen. Haemoproteus belopolskyi, H. balmorali, H. dolniki, H. magnus, H. minutus, H. fringillae, H. majoris, Leucocytozoon dubreuili, and Trypanosoma avium were recorded for the first time in Turkmenistan. The former five above-mentioned species of haemoproteids are new records for the fauna of Middle Asia. Gametocytes of leucocytozoids in fusiform host cells were found for the first time in passerine birds in the Holarctic. The host is Parus bokharensis. Due to the wide distribution and the opportunity to collect a large parasitological material using harmless for hosts methods, bird haemosporidian parasites can be used as convenient models for ecological and evolutionary biology studies in South Turkmenistan. The heavily infected Orphean Warbler Sylvia hortensis is an especially convenient host for such purposes.  相似文献   

15.
We investigated the degree of geographical shifts of transmission areas of vector-borne avian blood parasites (Plasmodium, Haemoproteus and Leucocytozoon) over ecological and evolutionary timescales. Of 259 different parasite lineages obtained from 5886 screened birds sampled in Europe and Africa, only two lineages were confirmed to have current transmission in resident bird species in both geographical areas. We used a phylogenetic approach to show that parasites belonging to the genera Haemoproteus and Leucocytozoon rarely change transmission area and that these parasites are restricted to one resident bird fauna over a long evolutionary time span and are not freely spread between the continents with the help of migratory birds. Lineages of the genus Plasmodium seem more freely spread between the continents. We suggest that such a reduced transmission barrier of Plasmodium parasites is caused by their higher tendency to infect migratory bird species, which might facilitate shifting of transmission area. Although vector-borne parasites of these genera apparently can shift between a tropical and a temperate transmission area and these areas are linked with an immense amount of annual bird migration, our data suggest that novel introductions of these parasites into resident bird faunas are rather rare evolutionary events.  相似文献   

16.
Tropical forests are experiencing increasing impacts from a multitude of anthropogenic activities such as logging and conversion to agricultural use. These perturbations are expected to have strong impacts on ecological interactions and on the transmission dynamics of infectious diseases. To date, no clear picture of the effects of deforestation on vector-borne disease transmission has emerged. This is associated with the challenge of studying complex systems where many vertebrate hosts and vectors co-exist. To overcome this problem, we focused on an innately simplified system – a small oceanic island (São Tomé, Gulf of Guinea). We analyzed the impacts of human land-use on host-parasite interactions by sampling the bird community (1735 samples from 30 species) in natural and anthropogenic land use at different elevations, and screened individuals for haemosporidian parasites from three genera (Plasmodium, Haemoproteus, Leucocytozoon). Overall, Plasmodium had the highest richness but the lowest prevalence, while Leucocytozoon diversity was the lowest despite having the highest prevalence. Interestingly, co-infections (i.e. intra-host diversity) involved primarily Leucocytozoon lineages (95%). We also found marked differences between bird species and habitats. Some bird species showed low prevalence but harbored high diversity of parasites, while others showed high prevalence but were infected with fewer lineages. These infection dynamics are most likely driven by host specificity of parasites and intrinsic characteristics of hosts. In addition, Plasmodium was more abundant in disturbed habitats and at lower elevations, while Leucocytozoon was more prevalent in forest areas and at higher elevations. These results likely reflect the ecological requirements of their vectors: mosquitoes and black flies, respectively.  相似文献   

17.
A total of 135 birds of 26 species in 13 families was examined for blood parasites; 43 birds (31.9%) of 13 species were infected; species of the Ploceidae were the most heavily infected. Species of Haemoproteus occurred most commonly 29 birds) while Leucocytozoon and Plasmodium species were virtually absent. There was no significant difference in the prevalence of hematozoa in birds from the mature rainforest and those in a savannah-urban setting.  相似文献   

18.
Prothonotary warbler (Protonotaria citrea) has shown a long-term decline in abundance in the United States. As a long-range migrant, these warblers are exposed to parasites in both tropical and temperate regions. The focus of this study was to use molecular techniques to examine the temporal prevalence patterns of heamosopridian parasites Plasmodium and Haemoproteus in breeding prothonotary warblers. The prevalence (presence or absence) of Plasmodium and Haemoproteus species was assayed using primer sets for the cytochrome b gene of the mitochondrial DNA. Blood samples were obtained from 187 adult prothonotary warblers collected at 3 central Virginia, U.S.A., breeding sites. The relationship between haemosporidian parasite infections and reproductive success also was examined. We found that 71% of captured prothonotary warblers were infected with haemosporidian parasites, specifically, with 36% prevalence for Haemoproteus spp. and 44% prevalence for Plasmodium spp., during the 2008 breeding season; for both parasites, prevalence increased throughout the season. We found significant variation in haemosporidian parasite prevalence across the breeding season that was strongly site specific. Conversely, we found no significant effects of haemosporidian parasite infections on the reproductive success of prothonotary warblers. This is in sharp contrast to recent reports suggesting considerable effects of these parasites on the reproductive success of wild birds.  相似文献   

19.
A total of 389 birds of 32 species representing 14 families from Tchad were examined for blood parasites. Eighty-nine (22.9%) harbored infections of Haemoproteus (64%), Plasmodium (12.4%), Trypanosoma (1.1%), Atoxoplasma (=Lankesterella) (5.6%), and microfilaria (28.1%). Species of Leucocytozoon were not observed in the present study. The occurrence of the different genera differed markedly between bird families; members of the Ploceidae comprised 85% of the infected birds.  相似文献   

20.
1. We estimated the correlation between host phylogeographical structure and beta diversity of avian haemosporidian assemblages of passerine birds to determine the degree to which parasite communities change with host evolution, expressed as genetic divergence between island populations, and we investigated whether differences among islands in the haemosporidia of a particular host species reflect beta diversity in the entire parasite assemblage, beta diversity in vectors, turnover of bird species and/or geographical distance. 2. We used Mantel tests to assess the significance of partial correlations between host nucleotide difference (based on cytochrome b) and haemosporidian (Haemoproteus spp. and Plasmodium spp.) mitochondrial lineage beta diversity within a given host species and between Plasmodium mitochondrial lineage beta diversity and mosquito and bird species beta diversity (or turnover). Three abundant and widespread host species (Tiaris bicolor, Coereba flaveola and Loxigilla noctis/barbadensis) were included in the study. Haemosporidian lineage beta diversity among nine islands was assessed using the Chao-Jaccard, Chao-S?rensen and Morisita-Horn indices of community similarity. Beta diversity indices of mosquito species and turnover of bird species were calculated from data in published records and field guides. 3. In Loxigilla spp., we found a positive correlation with geographical distance and an unexpected negative correlation between haemosporidian beta diversity and host genetic distance. Tiaris bicolor exhibited a significant positive correlation between haemosporidian beta diversity and beta diversity within the entire parasite assemblage. We did not find significant correlations between parasite beta diversity and mosquito beta diversity or bird species turnover. 4. Host phylogeographical structure does not appear to drive within-host beta diversity of haemosporidian lineages. Instead, the array of parasites on one host can reflect the haemosporidian assemblage on other hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号