首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2011年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector-borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites ( Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon ) from these sites in two widespread species of African rainforest birds, the yellow-whiskered greenbul ( Andropadus latirostris , Pycnonotidae) and the olive sunbird ( Cyanomitra olivacea , Nectariniidae). Twenty-six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats ( Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea , as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.  相似文献   
2.
In the debate over modes of vertebrate diversification in tropical rainforests, two competing hypotheses of speciation predominate: those that emphasize the role of geographical isolation during glacial periods and those that stress the role of ecology and diversifying selection across ecotones or environmental gradients. To investigate the relative roles of selection versus isolation in refugia, we contrasted genetic and morphologic divergence of the olive sunbird (Cyanomitra olivacea) at 18 sites (approximately 200 individuals) across the forest–savanna ecotone of Central Africa in a region considered to have harboured three hypothesized refugia during glacial periods. Habitats were characterized using bioclimatic and satellite remote‐sensing data. We found relatively high levels of gene flow between ecotone and forest populations and between refugia. Consistent with a pattern of divergence‐with‐gene‐flow, we found morphological characters to be significantly divergent across the gradient [forest versus ecotone (mean ± SD): wing length 60.47 ± 1.81 mm versus 62.18 ± 1.35 mm; tarsus length 15.51 ± 0.82 mm versus 16.00 ± 0.57 mm; upper mandible length 21.77 ± 1.09 mm versus 23.19 ± 0.98 mm, respectively]. Within‐habitat comparisons across forest and ecotone sites showed no significant differences in morphology. The results show that divergence in morphological traits is tied to environmental variables across the gradient and is occurring despite gene flow. The pattern of divergence‐with‐gene‐flow found is similar to that described for other rainforest species across the gradient. These results suggest that neither refugia, nor isolation‐by‐distance have played a major role in divergence in the olive sunbird, although ecological differences along the forest and savanna ecotone may impose significant selection pressures on the phenotype and potentially be important in diversification. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 821–835.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号