首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypothesis that migrants infected with blood parasites arrive on the northern coast of the Gulf of Mexico in poorer condition than uninfected birds, we examined 1705 migrant passerine birds representing 54 species of 11 families from 2 Gulf Coast sites for blood parasites. Three hundred and sixty (21.1%) were infected with 1 or more species of 4 genera of blood parasites. The prevalence of parasites was as follows: Haemoproteus spp. (11.7%), Plasmodium spp. (6.7%), Leucocytozoon spp. (1.3%), and Trypanosoma spp. (1.2%). Both prevalence and density of Haemoproteus spp. infection varied among species. We found no relationship of gender or age with the prevalence of Haemoproteus spp. infection or Plasmodium spp. infection, with the exception of the orchard oriole (Icterus spurius) for which older birds were more likely to be infected with Haemoproteus spp. than younger birds. We also found that scarlet tanagers and summer tanagers infected with species of Haemoproteus have lower fat scores than uninfected individuals and that rose-breasted grosbeaks and Baltimore orioles infected with Haemoproteus spp. have a smaller mean body mass than uninfected individuals. Blood parasites do seem to pose a physiological cost for Neotropical migrant passerines and may be important components of the ecology of these species.  相似文献   

2.
A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mitochondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocytozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relationships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi, is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis. Explicit hypothesis testing supported these conclusions.  相似文献   

3.
A total of 389 birds of 32 species representing 14 families from Tchad were examined for blood parasites. Eighty-nine (22.9%) harbored infections of Haemoproteus (64%), Plasmodium (12.4%), Trypanosoma (1.1%), Atoxoplasma (=Lankesterella) (5.6%), and microfilaria (28.1%). Species of Leucocytozoon were not observed in the present study. The occurrence of the different genera differed markedly between bird families; members of the Ploceidae comprised 85% of the infected birds.  相似文献   

4.
Birds from south-central Cameroon, western Africa, were surveyed for blood parasites from August to October 1986. Of 331 birds examined, representing 65 species of 15 families and 6 orders (mostly passerines), 55 (17%) were found to be infected with 1 or more genera of hemotropic parasites. These included: Haemoproteus spp. (11% prevalence), Leucocytozoon spp. (3%), Plasmodium spp. (2%), Trypanosoma spp. (1%), and microfilariae of filariid nematodes (1%). Several new host-parasite associations were identified.  相似文献   

5.
Many bird species host several lineages of apicomplexan blood parasites (Protista spp., Haemosporida spp.), some of which are shared across different host species. To understand such complex systems, it is essential to consider the fact that different lineages, species, and families of parasites can occur in the same population, as well as in the same individual bird, and that these parasites may compete or interact with each other. In this study, we present a new polymerase chain reaction (PCR) protocol that, for the first time, enables simultaneous typing of species from the 3 most common avian blood parasite genera (Haemoproteus, Plasmodium, and Leucocytozoon). By combining the high detection rate of a nested PCR with another PCR step to separate species of Plasmodium and Haemoproteus from Leucocytozoon, this procedure provides an easy, rapid, and accurate method to separate and investigate these parasites within a blood sample. We have applied this method to bird species with known infections of Leucocytozoon spp., Plasmodium spp., and Haemoproteus spp. To obtain a higher number of parasite lineages and to test the repeatability of the method, we also applied it to blood samples from bluethroats (Luscinia svecica), for which we had no prior knowledge regarding the blood parasite infections. Although only a small number of different bird species were investigated (6 passerine species), we found 22 different parasite species lineages (4 Haemoproteus, 8 Plasmodium, and 10 Leucocytozoon).  相似文献   

6.
We examined the prevalence and host fidelity of avian haemosporidian parasites belonging to the genera Haemoproteus, Leucocytozoon and Plasmodium in the central Philippine islands by sampling 23 bird families (42 species). Using species-specific PCR assays of the mitochondrial cytochrome b gene (471base pairs, bp), we detected infections in 91 of the 215 screened individuals (42%). We also discriminated between single and multiple infections. Thirty-one infected individuals harbored a single Haemoproteus lineage (14%), 18 a single Leucocytozoon lineage (8%) and 12 a single Plasmodium lineage (6%). Of the 215 screened birds, 30 (14%) presented different types of multiple infections. Intrageneric mixed infections were generally more common (18 Haemoproteus/Haemoproteus, 3 Leucocytozoon/Leucocytozoon, and 1 Plasmodium/Plasmodium) than intergeneric mixed infections (7 Haemoproteus/Leucocytozoon and 1 Haemoproteus/Leucocytozoon/Plasmodium). We recovered 81 unique haemosporidian mitochondrial haplotypes. These clustered in three strongly supported monophyletic clades that correspond to the three haemosporidian genera. Related lineages of Haemoproteus and Leucocytozoon were more likely to derive from the same host family than predicted by chance; however, this was not the case for Plasmodium. These results indicate that switches between host families are more likely to occur in Plasmodium. We conclude that Haemoproteus has undergone a recent diversification across well-supported host-family specific clades, while Leucocytozoon shows a longer association with its host(s). This study supports previous evidence of a higher prevalence and stronger host-family specificity of Haemoproteus and Leucocytozoon compared to Plasmodium.  相似文献   

7.
Blood films from 421 birds of 142 species, representing 29 avian families, from the environs of Cali, Colombia, were examined for blood parsites. Only 30 (7.1%) birds of 26 species harbored hematozoa. Species of Haemoproteus (3.1%) and microfilaria (2.3%) were the most commonly encountered blood parasites; species of Leucocytozoon, Plasmodium, Akiba and Lankesterella were found in a few birds. Mixed infections with more than one genus of blood parasite were rare; most infections encountered were of low intensity.  相似文献   

8.
Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species.  相似文献   

9.
We investigated the degree of geographical shifts of transmission areas of vector-borne avian blood parasites (Plasmodium, Haemoproteus and Leucocytozoon) over ecological and evolutionary timescales. Of 259 different parasite lineages obtained from 5886 screened birds sampled in Europe and Africa, only two lineages were confirmed to have current transmission in resident bird species in both geographical areas. We used a phylogenetic approach to show that parasites belonging to the genera Haemoproteus and Leucocytozoon rarely change transmission area and that these parasites are restricted to one resident bird fauna over a long evolutionary time span and are not freely spread between the continents with the help of migratory birds. Lineages of the genus Plasmodium seem more freely spread between the continents. We suggest that such a reduced transmission barrier of Plasmodium parasites is caused by their higher tendency to infect migratory bird species, which might facilitate shifting of transmission area. Although vector-borne parasites of these genera apparently can shift between a tropical and a temperate transmission area and these areas are linked with an immense amount of annual bird migration, our data suggest that novel introductions of these parasites into resident bird faunas are rather rare evolutionary events.  相似文献   

10.
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector-borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites ( Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon ) from these sites in two widespread species of African rainforest birds, the yellow-whiskered greenbul ( Andropadus latirostris , Pycnonotidae) and the olive sunbird ( Cyanomitra olivacea , Nectariniidae). Twenty-six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats ( Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea , as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.  相似文献   

11.
Birds from three National Parks (Bwindi Impenetrable, Kibale, and Queen Elizabeth) in western Uganda were surveyed during the dry season in July 2003 and investigated for hematozoa by microscopic examination of stained blood films. Of 307 birds examined, representing 68 species of 15 families and four orders, 61.9% were found to be infected with blood parasites. Species of Haemoproteus (15.3% prevalence), Plasmodium (20.5%), Leucocytozoon (40.1%), Trypanosoma (11.4%), Hepatozoon (2.6%), Atoxoplasma (0.3%), and microfilariae (3.9%) were recorded. Except for Haemoproteus spp. infections, the overall prevalence of hematozoa belonging to all genera was significantly higher in this study than was previously reported in Uganda. Thirty-six species of birds were examined for blood parasites for the first time and 112 new host-parasite associations were identified. Eighty-one were at the generic and 31 at the specific level of the hematozoa. Hepatozoon and Atoxoplasma spp. were detected for the first time in Uganda.  相似文献   

12.
Sixty-four birds of 43 species were caught at six localities in Colombia during the dry season in March 1998 and investigated for hematozoa by microscopic examination of stained blood films. Haemoproteus coatneyi, Plasmodium vaughani, Leucocytozoon sp., and microfilariae were identified. The overall prevalence of infection was 8%. Prevalences of infection for Haemoproteus spp., Plasmodium spp., Leucocytozoon spp., and microfilariae were 3%, 2%, 2%, and 3%, respectively. All hemosporidian infections encountered were of low intensity (< 1% of infected erythrocytes). The low prevalences and intensities of hemosporidian parasites in this study are in accord with other records from the Neotropics.  相似文献   

13.
Blood smears from 259 birds of 12 species, representing four families of raptors, from New Jersey, Pennsylvania, Delaware, and Virginia were examined for blood parasites. Infected birds constituted 59.1% of the total. Birds were infected with one or more of the following genera of protozoa: Leucocytozoon (43.2%); Haemoproteus (21.6%); Plasmodium (1.2%); and Trypanosoma (1.2%). Blood culture of 142 raptors of 11 species for Trypanosoma revealed a prevalence of 41.5%. Plasmodium circumflexum is reported for the first time in Accipiter striatus, and Trypanosoma sp. in Buteo jamaicensis.  相似文献   

14.
Avian blood parasites have been intensively studied using morphological methods with limited information on their host specificity and species taxonomic status. Now the analysis of gene sequences, especially the mitochondrial cytochrome b gene of the avian haemosporidian species of Haemoproteus, Plasmodium, and Leucocytozoon, offers a new tool to review the parasite specificity and status. By comparing morphological and genetic techniques, we observed nearly the same overall prevalence of haemosporidian parasites by microscopy (19.8%) and polymerase chain reaction (PCR) (21.8%) analyses. However, in contrast to the single valid Leucocytozoon species (L. toddi) in the Falconiformes we detected 4 clearly distinctive strains by PCR screening. In the Strigiformes, where the only valid Leucocytozoon species is L. danilewskyi, we detected 3 genetically different strains of Leucocytozoon spp. Two strains of Haemoproteus spp. were detected in the birds of prey and owls examined, whereas the strain found in the tawny owl belonged to the morphospecies Haemoproteus noctuae. Three Plasmodium spp. strains that had already been found in Passeriformes were also detected in the birds of prey and owls examined here, supporting previous findings indicating a broad and nonspecific host spectrum bridging different bird orders.  相似文献   

15.
We describe a reliable and relatively inexpensive method for detecting and differentiating between the commonly studied avian blood parasite genera Haemoproteus, Plasmodium, and Leucocytozoon. The assay takes advantage of a Haemoproteus-specific restriction site identified by sequencing full mitochondrial genomes from two Haemoproteus and three Plasmodium lineages and an adjacent, genus-specific restriction site identified in Leucocytozoon spp. The assay was sensitive to simulated parasitemias of approximately 8 x 10(-6) per erythrocyte and was 100% accurate in differentiating between parasite genera isolated from a broad geographical and taxonomic sampling of infected hosts.  相似文献   

16.
A total of 135 birds of 26 species in 13 families was examined for blood parasites; 43 birds (31.9%) of 13 species were infected; species of the Ploceidae were the most heavily infected. Species of Haemoproteus occurred most commonly 29 birds) while Leucocytozoon and Plasmodium species were virtually absent. There was no significant difference in the prevalence of hematozoa in birds from the mature rainforest and those in a savannah-urban setting.  相似文献   

17.
Inferences about the evolution of host-parasitic relationships are often made based on the prevalence of avian malaria, which is usually estimated in a large sample of birds using either microscopic or molecular screening of blood samples. However, different techniques often have variable accuracy; thus, screening methodology can raise issues about statistical bias if method sensitivity varies systematically across parasites or hosts. To examine this possibility, published information was collected on the prevalence of species in 4 genera of avian blood parasites ( Plasmodium, Haemoproteus, Leucocytozoon, and Trypanosoma) from various sources that used different tools. The data were tested to determine if the application of different methods provided different estimates for the same hosts. In these comparisons between the main methodologies, the PCR-based molecular methods were generally found to provide higher estimates for Plasmodium spp. prevalence than microscopic tools, while there was no significant tendency for such a trend in species of Haemoproteus and Leucocytozoon. When analyzing intraspecific variance of prevalence within molecular studies, some studies provided consistently higher estimates for Haemoproteus spp. prevalence than others, indicating that differences between studies can affect detected estimates. Within microscopic studies, surveys that examined more microscopic fields were more likely to report higher prevalence for Plasmodium spp. than those relying on fewer microscopic fields. Consequently, studies making comparisons across parasite genera and/or host species from different sources need to consider several types of bias originating from variation in method sensitivity.  相似文献   

18.
Hematozoa from the spotted owl   总被引:1,自引:0,他引:1  
One hundred five spotted owls (Strix occidentalis) from seven populations and three subspecies were examined for hematozoa. Haemoproteus noctuae, H. syrnii, Leucocytozoon ziemanni, Trypanosoma avium, Atoxoplasma sp. and unidentified microfilariae were recorded. All northern (S. occidentalis caurina), California (S. occidentalis occidentalis) and Mexican (S. occidentalis lucida) spotted owls were infected with at least one hematozoan; 79% had multiple infections. Twenty-two percent of the owls were infected with as many as four species of parasites. There were significant differences in the prevalence of these species of parasites occurring among the five populations of northern and California spotted owls sampled in California. Haemoproteus noctuae, H. syrnii and Atoxoplasma sp. represented new host records for this host species.  相似文献   

19.
Birds from the Area de Conservacion Guanacaste in northwestern Costa Rica were surveyed for blood parasites in June 2001 and December 2001-January 2002. Of 354 birds examined, representing 141 species of 35 families and 15 orders, 44 (12.4%) were infected with blood parasites. Species of Haemoproteus (4.8% prevalence), Plasmodium (0.6%), Leucocytozoon (0.3%), Trypanosoma (2.0%), and microfilariae (7.6%) were recorded. Twelve species of birds in this survey were examined for blood parasites for the first time. Several new host-parasite associations were identified.  相似文献   

20.
Blood parasites of some birds from Senegal   总被引:1,自引:0,他引:1  
A total of 809 birds from Senegal, including 43 species and 21 families, were examined for hematozoans; 93 birds (11.5%) harbored blood parasites, with only 7 (7.5%) harboring mixed infections. Species of Haemoproteus occurred in 81.7% of the infected birds while species of Plasmodium. Trypanosoma, microfilaria and Leucocytozoon were encountered less frequently. The majority of the sample was composed of species of ploceids and estrildidis and blood parasites were most prevalent in the colonial-nesting ploceids. Prevalence of blood parasites in Senegal was low in comparison to that seen in birds from other parts of Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号