首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total chemical synthesis and semisynthesis of proteins have become widely used tools to alter and control the chemical structure of soluble proteins, Thus, offering unique possibilities to understand protein function in vitro and in vivo. However, these approaches rely on our ability to produce and chemoselectively link peptide segments with each other or with recombinantly produced protein segments. Access to integral membrane and membrane-associated proteins via these approaches has been hampered by the fact that integral membrane peptides or lipid-modified peptides are difficult to obtain mostly due to incomplete amino acid coupling reactions and their poor handling properties. This article will highlight the advances in the total chemical synthesis and semisynthesis of small viral as well as bacterial ion channels. Recent synthesis approaches for membrane-associated proteins will be discussed as well.  相似文献   

2.
Peptide microarrays can be used for the high-throughput analysis of protein-peptide interactions. However, current peptide microarrays are rather costly to make and require cumbersome steps of introducing novel polymeric surfaces and/or chemical derivatization of peptides. Here, we report a novel method for manufacturing peptide microarrays by elevating the peptide on the layer of protein by a fusion protein approach. Using two protein kinases and their peptide substrates as examples, we show that elevating peptides on the layer of protein allows sensitive, specific, and efficient detection of peptide-protein interactions without the need for complicated chemical modification of solid supports and peptides. It was found that kinase activity could be detected with as low as 0.09 fmol of kemptide, which is about 1000-fold more sensitive than the 0.1 pmol obtained with other microarray systems. Furthermore, peptides can be produced as fusion proteins by fermentation of recombinant Escherichia coli and thus the expensive peptide synthesis process can be avoided. Therefore, this new strategy will not only be useful in high-throughput and cost-effective screening of kinase substrate peptides but also be generally applicable in studying various protein-peptide interactions.  相似文献   

3.
Peptide libraries have proven to be useful in applications such as substrate profiling, drug candidate screening and identifying protein–protein interaction partners. However, issues of fidelity, peptide length, and purity have been encountered when peptide libraries are chemically synthesized. Biochemically produced libraries, on the other hand, circumvent many of these issues due to the fidelity of the protein synthesis machinery. Using thioredoxin as an expression partner, a stably folded peptide scaffold (avian pancreatic polypeptide) and a compatible cleavage site for human rhinovirus 3C protease, we report a method that allows robust expression of a genetically encoded peptide library, which yields peptides of high purity. In addition, we report the use of methodological synchronization, an experimental design created for the production of a library, from initial cloning to peptide characterization, within a 5-week period of time. Total peptide yields ranged from 0.8% to 16%, which corresponds to 2–70 mg of pure peptide. Additionally, no correlation was observed between the ability to be expressed or overall yield of peptide-fusions and the intrinsic chemical characteristics of the peptides, indicating that this system can be used for a wide variety of peptide sequences with a range of chemical characteristics.  相似文献   

4.
抗菌肽是生物体产生的、抵抗外源病原物侵袭并具有广谱抗微生物作用的多肽类物质,是天然免疫系统的重要组成部分。从首次发现抗菌肽以来,现在已经获得了上千个有不同活性的抗菌肽候选者。回顾和总结了抗菌肽筛选的策略,包括经典方法、差异显示法、基于核酸的方法以及基于生物信息学分析法等,并重点介绍了最近提出的一种高通量筛选方法。最后本文对抗菌肽的临床应用研究,尤其是对进入临床评价阶段的抗菌肽研究进展进行了综述。  相似文献   

5.
Large combinatorial libraries of random peptides have been used for a variety of applications that include analysis of protein-protein interactions, epitope mapping, and drug targeting. The major obstacle in screening these libraries is the loss of specific but low affinity binding peptides during washing steps. Loss of these specific binders often results in isolation of peptides that bind nonspecifically to components used in the selection process. Previously, it has been demonstrated that dimerizing or multimerizing a peptide can remarkably improve its binding kinetics by 10- to 1000-fold due to an avidity effect. To take advantage of this observation, we constructed a random library of 12 amino acid dimeric peptides on polyethylene glycol acrylamide (PEGA) beads by modifying the 'one-bead-one-compound' approach. The chemical synthesis of 100,000 peptides as dimers can be problematic due to steric and aggregation effects and the presence of many peptide sequences that are difficult to synthesize. We have designed a method, described in detail here, to minimize the problems inherent in the synthesis of a dimeric library by modifying the existing 'split and pool' synthetic method. Using this approach the dimeric library was used to isolate a series of peptides that bound selectively to epithelial cancer cells. One peptide with the amino acid sequence QMARIPKRLARH bound as a dimer to prostate cancer cells spiked into the blood but did not bind to circulating hematopoeitic cells. The monomeric form of this peptide, however, did not bind well to the same LNCaP cell line. These data demonstrate that "hits" obtained from such a 'one-bead-one-dimer' library can be used directly for the final application or used as leads for construction of second generation libraries.  相似文献   

6.
Discovery of antimicrobial peptides (AMP) is to a large extent based on screening of fractions of natural samples in bacterial growth inhibition assays. However, the use of bacteria is not limited to screening for antimicrobial substances. In later steps, bioengineered "bugs" can be applied to both production and characterization of AMPs. Here we describe the idea to use genetically modified Escherichia coli strains for both these purposes. This approach allowed us to investigate SpStrongylocins 1 and 2 from the purple sea urchin Strongylocentrotus purpuratus only based on sequence information from a cDNA library and without previous direct isolation or chemical synthesis of these peptides. The recombinant peptides are proved active against all bacterial strains tested. An assay based on a recombinant E. coli sensor strain expressing insect luciferase, revealed that SpStrongylocins are not interfering with membrane integrity and are therefore likely to have intracellular targets.  相似文献   

7.
Antimicrobial peptides and plant disease control   总被引:2,自引:0,他引:2  
Several diseases caused by viruses, bacteria and fungi affect plant crops, resulting in losses and decreasing the quality and safety of agricultural products. Plant disease control relies mainly on chemical pesticides that are currently subject to strong restrictions and regulatory requirements. Antimicrobial peptides are interesting compounds in plant health because there is a need for new products in plant protection that fit into the new regulations. Living organisms secrete a wide range of antimicrobial peptides produced through ribosomal (defensins and small bacteriocins) or non-ribosomal synthesis (peptaibols, cyclopeptides and pseudopeptides). Several antimicrobial peptides are the basis for the design of new synthetic analogues, have been expressed in transgenic plants to confer disease protection or are secreted by microorganisms that are active ingredients of commercial biopesticides.  相似文献   

8.
Johnson EC  Kent SB 《Biopolymers》2007,88(3):340-349
We have decided to use the delta-opioid receptor (372 residues) as a model system to develop methods for the total chemical synthesis of G protein-coupled receptors. The most important feature of this receptor from a chemical synthesis perspective is the wealth of cysteines spread throughout its sequence, which are required for native chemical ligation. A total of 13 cysteines are located in the the delta-opioid receptor polypetide chain in both loop and putative transmembrane (TM) regions. We envisioned a synthesis of the polypeptide that would make use of peptide-alpha-thioesters ranging from 37 to 63 residues in length. Here, we report data from an exploratory synthesis of such a set of peptide-alpha-thioesters. For all seven peptides, the crude material approximately 30 residues into the synthesis was sufficiently homogeneous to make isolation and purification straightforward. Extension of the peptides to between 40 and 50 residues in length generally produced a significant decrease in the quality of the crude products, although in most cases, we judged that high purity peptides could probably be isolated. By 60 residues, however, the crude peptide product mixtures are probably too heterogeneous to purify to homogeneity by reversed-phase HPLC. In general, delta-opioid receptor peptides with a single predicted TM domain were sufficiently soluble to handle postcleavage and to analyze by reversed-phase HPLC, whereas 1.5 TM domains rendered the peptides too hydrophobic to handle or analyze by standard protocols. Given the challenges of chain assembly, handling, and purification of these peptides, a synthetic strategy that uses approximately 12 or 13 shorter peptide segments of 20-40 residues each is probably a more feasible approach.  相似文献   

9.
Techniques involving solid supports have played crucial roles in the development of genomics, proteomics, and in molecular biology in general. Similarly, methods for immobilization or attachment to surfaces and resins have become ubiquitous in sequencing, synthesis, analysis, and screening of oligonucleotides, peptides, and proteins. However, solid-phase tools have been employed to a much lesser extent in glycobiology and glycomics. This review provides a comprehensive overview of solid-phase chemical tools for glycobiology including methodologies and applications. We provide a broad perspective of different approaches, including some well-established ones, such as immobilization in microtiter plates and to cross-linked polymers. Emerging areas such as glycan microarrays and glycan sequencing, quantum dots, and gold nanoparticles for nanobioscience applications are also discussed. The applications reviewed here include enzymology, immunology, elucidation of biosynthesis, and systems biology, as well as first steps toward solid-supported sequencing. From these methods and applications emerge a general vision for the use of solid-phase chemical tools in glycobiology.  相似文献   

10.
A potent and persistent non-mammalian derived vasodilator, maxadilan (Maxa) consists of 61 amino acids with two disulfide linkages and acts as an agonist of the type I receptor of pituitary adenylate cyclase activating polypeptide (PACAP), although there is very little sequence similarity. The total chemical syntheses of Maxa, its disulfide isomers and various fragments have been performed successfully by highly efficient solid-phase peptide synthesis (SPPS). A “difficult sequence”, envisaged in the middle region of Maxa, could be overcome by improved synthesis protocols. After assembly peptides were liberated from the resin by cleavage. Peptides having disulfide(s) were purified by two steps of preparative HPLC using cation exchange followed by reverse phase columns. Purified peptides were characterized by HPLC, Edman-sequencing, amino acid analysis and mass spectrometry in addition to disulfide form determination. The peptides obtained were used for recognition studies by the melanophore assay to confirm the native disulfide form. Peptide libraries related to Maxa, produced in the present study, will be useful for the elucidation of the structural requirements of Maxa for interaction with the PACAP type 1 receptor (PAC1). This paper is dedicated to the memory of Professor Bruce Merrifield, a pioneer and one of the most respected experimental scientists, who made extraordinary contributions to high throughput chemical synthesis.  相似文献   

11.
Absolute quantification of peptides by mass spectrometry requires a reference, frequently using heavy isotope-coded peptides as internal standards. These peptides have traditionally been generated by chemical stepwise synthesis. Recently a new way to supply such peptides was described in which nucleotide sequences coding for the respective peptides are concatenated into a synthetic gene (QconCAT). These QconCATs are then expressed to produce a polypeptide consisting of concatenated peptides, purified, quantified by various methods, and then digested to yield the final internal standard peptides. Although both of these methods for peptide production are routinely used for absolute quantifications, there is currently no information regarding the accuracy of the quantifications made in each case. In this study, we used sets of synthetic and biological peptides in parallel to evaluate the accuracy of either method. We also addressed some technical issues regarding the preparation and proper utilization of such standard peptides. Twenty-five peptides derived from the Caenorhabditis elegans proteome were selected for this study. Twenty-four were successfully chemically synthesized. Five QconCAT genes were designed, each a concatenation of the same 25 peptides but each in separate, different randomized order, and expressed via in vitro translation reactions that contained heavy isotope-labeled lysine and arginine. Three of the five QconCATs were successfully produced. Different digestion conditions, including various detergents and incubation conditions, were tested to find those optimal for the generation of a reproducible and accurate reference sample mixture. All three QconCAT polypeptides were then digested using the optimized conditions and then mixed in a 1:1 ratio with their synthetic counterparts. Multireaction monitoring mass spectrometry was then used for quantification. Results showed that the digestion protocol had a significant impact on equimolarity of final peptides, confirming the need for optimization. Under optimal conditions, however, most QconCAT peptides were produced at an equimolar ratio. A few QconCAT-derived peptides were largely overestimated due to problems with solubilization or stability of the synthetic peptides. Although the order in which the peptide sequences appeared in the QconCAT sequence proved to affect the success rate of in vitro translation, it did not significantly affect the final peptide yields. Overall neither the chemical synthesis nor the recombinant genetic approach proved to be superior as a method for the production of reference peptides for absolute quantification.  相似文献   

12.
Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina   总被引:5,自引:0,他引:5  
Four broad-spectrum, 11 and 12 residue, novel antimicrobial peptides have been isolated from the adrenaline-stimulated skin secretions of the Indian frog Rana tigerina. Sequences of these peptides have been determined by automated Edman degradation, by mass spectral analysis and confirmed by chemical synthesis. These peptides, which we have named as tigerinins, are characterized by an intramolecular disulfide bridge between two cysteine residues forming a nonapeptide ring. This feature is not found in other amphibian peptides. Conformational analysis indicate that the peptides tend to form beta-turn structures. The peptides are cationic and exert their activity by permeabilizing bacterial membranes. Tigerinins represent the smallest, nonhelical, cationic antimicrobial peptides from amphibians.  相似文献   

13.
《FEBS letters》2014,588(23):4487-4496
Cyclotides belong to the family of cyclic cystine-knot peptides and have shown promise as scaffolds for protein engineering and pharmacological modulation of cellular protein activity. Cyclotides are characterized by a cystine-knotted topology and a head-to-tail cyclic polypeptide backbone. While they are primarily produced in plants, cyclotides have also been obtained by chemical synthesis. However, there is still a need for methods to generate cyclotides in high yields to near homogeneity. Here, we report a biomimetic approach which utilizes an engineered version of the enzyme Sortase A to catalyze amide backbone cyclization of the recombinant cyclotide MCoTI-II, thereby allowing the efficient production of active homogenous species in high yields. Our results provide proof of concept for using engineered Sortase A to produce cyclic MCoTI-II and should be generally applicable to generating other cyclic cystine-knot peptides.  相似文献   

14.
Codons for amino acids sharing similar chemical properties seem to cluster on the genetic codon table. Such a geographical distribution of the codons was exploited to create chemically synthesised DNA that encodes peptide libraries containing only a subset of the 20 natural amino acids. The frequency of each amino acid in the subset was further optimised by quantitatively manipulating the ratio of the four phosphoamidites during chemical synthesis of the libraries. Peptides encoded by such libraries show a reduced complexity and could be enriched in peptides of a desired property, which are thus more suitable when screening for functional peptides. Proof of concept for the codon-biased design of peptide libraries was shown by design, synthesis, and characterisation of a transmembrane peptide library that contains >80% transmembrane peptides, representing a 160-fold enrichment compared with a fully randomised library.  相似文献   

15.
It is well known that standard peptides, which comprise proteinogenic amino acids, can act as specific chemical probes to target proteins with high affinity. Despite this fact, a number of peptide drug leads have been abandoned because of their poor cell permeability and protease instability. On the other hand, nonstandard peptides isolated as natural products often exhibit remarkable pharmaco-behavior and stability in vivo. Although it is likely that numerous nonstandard therapeutic peptides capable of recognizing various targets could have been synthesized, enzymes for nonribosomal peptide syntheses are complex; therefore, it is difficult to engineer such modular enzymes to build nonstandard peptide libraries. Here we describe an emerging technology for the synthesis of nonstandard peptides that employs an integrated system of reconstituted cell-free translation and flexizymes. We summarize the historical background of this technology and discuss its current and future applications to the synthesis of nonstandard peptides and drug discovery.  相似文献   

16.
Misfolded conformers of the prion protein are aetiologically implicated in neurodegenerative conditions termed prion diseases (also known as transmissible spongiform encephalopathies). Two constitutively expressed N-terminal peptides corresponding to human residues 23–90 and 23–111 are thought to serve normal physiological roles related to neuronal protection with membrane binding possibly playing a part in their mechanism of action. These peptides, along with several derivatives up to 111 residues in length, have been produced by microwave assisted peptide synthesis. HPLC and MS characterisation showed that the peptides were manufactured in good yields at high purity. Peptides were assayed by fluorescence spectroscopy for synthetic lipid-membrane binding activity and by dichlorodihydrofluorescein diacetate assay for the amelioration of reactive oxygen species production. Results of these assays were similar to those reported for the wild type recombinant PrP, demonstrating that these synthetic peptides are useful for biological and chemical assays of PrP activity. Further, the longest peptide 1–111 was dimerised via a single internal cystine residue with good yield. The high yields and low purification burden of the microwave assisted synthesis method lends itself to the production of difficult to produce peptides for such studies.  相似文献   

17.
萜类化合物种类繁多,生物活性多样,在食品、药品与化妆品等行业中具有广泛的应用。萜类化合物多来源于植物,然而随着合成生物学的快速发展,相较于传统的天然植物提取与化学合成方法,利用工程微生物进行萜类化合物异源合成的方法显得更为经济与环保。萜类合成酶的催化活性及合成产物的结构特性是萜类化合物异源合成的关键。通过蛋白定向进化与理性设计可以有针对性地优化萜类合成酶的催化性能及产物专一性,但该方案需要一个特异的筛选方法来实现蛋白突变体库的高通量筛选。近年来,一系列高通量筛选方法的建立使得萜类合成酶的筛选变得更加灵敏与高效。本文对近期建立的萜类合成酶高通量筛选方法进行了综述,简要概述了各种筛选方法的基本原理与优缺点,并对高通量筛选技术在萜类合成酶改造中的应用做出了展望。  相似文献   

18.
The synthesis of large numbers of peptides can be very labor intensive and, if a conventional peptide synthesizer is used, only small numbers of peptides can be produced within a reasonable time. The techniques described below can make large numbers of different peptides simultaneously with varying degrees of mechanization, ranging from the wholly manual methods, to those involving complete mechanization of the whole synthesis process. Most of the multiple synthesis methods are primarily intended for small scale production ranging from microgram amounts up to a few tens of milligrams. All of the systems are economical in use of solvents and reagents, enabling cost-effective synthesis. The techniques described can also be used to prepare peptide libraries, containing several millions of peptide sequences, to enable the rapid screening of all possible permutations of amino acids within short peptides. However, it is considered that multiple synthesis methods are not particularly suited where extreme high purity or very long peptides are required.  相似文献   

19.
Peptides act as biological mediators and play a key role of various physiological activities. Sulfur-containing peptides are widely used in natural products and drug molecules due to their unique biological activity and chemical reactivity of sulfur. Disulfides, thioethers, and thioamides are the most common motifs of sulfur-containing peptides, and they have been extensively studied and developed for synthetic methodology as well as pharmaceutical applications. This review focuses on the illustration of these three motifs in natural products and drugs, as well as the recent advancements in the synthesis of the corresponding core scaffolds.  相似文献   

20.
The multipin peptide synthesis technique has been used to map antigenic sites of proteins (1,2). Antibodies raised to the whole protein are screened on pin-synthesized overlapping octapeptides homologous with the protein of interest, and the peptides that bind antibodies clearly identify the epitopes. What is described in this study is a method using pin-synthesized peptides to generate specific antibodies to many peptides. Cleavable linkers have been developed (3) that, used together with the multipin peptide synthesis technique, allow the synthesis and cleavage of many thousands of peptides into aqueous solutions at physiological pH. This technique is useful for assays requiring peptides in solution, e.g., mapping of T-cell determinants. A technique has been developed for the cleavage of many peptides from pins and simultaneous coupling to immunogenic carriers (4). The conjugates produced are suitable for the generation of antipeptide antibodies. This procedure is illustrated using several 15 amino acid long peptides (15-mers), homologous with the sequence of a model antigen, myohemerythrin (MHr). The resulting antipeptide sera generated were tested by ELISA for titer and specificity on pin-synthesized peptides and beta-amide peptides and the protein antigen coated to microtiter plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号