首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents.  相似文献   

2.
Peptides with antimicrobial properties are present in most if not all plant species. All plant antimicrobial peptides isolated so far contain even numbers of cysteines (4, 6, or 8), which are all pairwise connected by disulfide bridges, thus providing high stability to the peptides. Based on homologies at the primary structure level, plant antimicrobial peptides can be classified into distinct families including thionins, plant defensins, lipid transfer proteins, and he vein- and knottin-type antimicrobial peptides. Detailed three-dimensional structure information has been obtained for one or more members of these peptide families. All antimicrobial peptides studied thus far appear to exert their antimicrobial effect at the level of the plasma membrane of the target microorganism, but the different peptide types are likely to act via different mechanisms. Antimicrobial peptides can occur in all plant organs. In unstressed organs, antimicrobial peptides are usually most abundant in the outer cell layer lining the organ, which is consistent with a role for the antimicrobial peptides in constitutive host defense against microbial invaders attacking from the outside. Thionins are predominantly located intracellularly but are also found in the extracellular space, whereas most plant defensins and lipid transfer proteins are deposited exclusively in the extracellular space. In a number of plant species, a strong induction of genes expressing either thionins, plant defensins, or lipid transfer proteins has been observed on infection of the leaves by microbial pathogens. Hence, antimicrobial peptides can also take part in the inducible defense response of plants. Constitutive expression in transgenic plants of heterologous antimicrobial peptide genes has been achieved, which in some cases has led to enhanced resistance to particular microbial plant pathogens.  相似文献   

3.
Wang A  Wang J  Hong J  Feng H  Yang H  Yu X  Ma Y  Lai R 《Biochimie》2008,90(6):863-867
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Sichuan region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the rufous-spotted torrent frog, Amolops loloensis. Members of the new peptide family named amolopins are composed of 18 amino acids with a unique sequence, for example, NILSSIVNGINRALSFFG. By BLAST search, amolopins did no show similarity to any known peptides. Among the tested microorganisms, native and synthetic peptides only showed antimicrobial activities against Staphylococcus aureus ATCC2592 and Bacillus pumilus, no effects on other microorganisms. The CD spectroscopy showed that it adopted a structure of random combined with beta-sheet in water, Tris-HCl or Tris-HCl-SDS. Several cDNAs encoding amolopins were cloned from the skin cDNA library of A. loloensis. The precursors of amolopin are composed of 62 amino acid residues including predicted signal peptides, acidic propieces, and mature antimicrobial peptides. The preproregion of amolopin precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature amolopins are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor.  相似文献   

4.
Many peptides that are released in vitro or in vivo from animal or plant proteins are bioactive and have regulatory functions in humans beyond normal and adequate nutrition. Different health effects have been attributed to food-derived peptides, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption and/or bioavailability, cyto- or immunomodulatory effects, and opioid activities. Numerous products are already on the market or under development by food companies that exploit the potential of food-derived bioactive peptides and which ascribe scientifically evidenced health claims to consumption of these functional foods.  相似文献   

5.
In contrast to many antimicrobial peptides, members of the proline-rich group of antimicrobial peptides inactivate Gram-negative bacteria by a non-lytic mechanism. Several lines of evidence indicate that they are internalized into bacteria and their activity mediated by interaction with unknown cellular components. With the aim of identifying such interactors, we selected mutagenized Escherichia coli clones resistant to the proline-rich Bac7(1-35) peptide and analysed genes responsible for conferring resistance, whose products may thus be involved in the peptide's mode of action. We isolated a number of genomic regions bearing such genes, and one in particular coding for SbmA, an inner membrane protein predicted to be part of an ABC transporter. An E. coli strain carrying a point mutation in sbmA, as well as other sbmA-null mutants, in fact showed resistance to several proline-rich peptides but not to representative membranolytic peptides. Use of fluorescently labelled Bac7(1-35) confirmed that resistance correlated with a decreased ability to internalize the peptide, suggesting that a bacterial protein, SbmA, is necessary for the transport of, and for susceptibility to, proline-rich antimicrobial peptides of eukaryotic origin.  相似文献   

6.
Ribosomally synthesized peptides with antimicrobial properties (antimicrobial peptides-AMPs) are produced by eukaryotes and prokaryotes and represent crucial components of their defense systems against microorganisms. Although they differ in structure, they are nearly all cationic and very often amphiphilic, which reflects the fact that many of them attack their target cells by permeabilizing the cell membrane. They can be roughly categorized into those that have a high content of a certain amino acid, most often proline, those that contain intramolecular disulfide bridges, and those with an amphiphilic region in their molecule if they assume an alpha-helical structure. Most of the known ribosomally synthesized peptides with antimicrobial functions have been identified and studied during the last 20 years. As a result of these studies, new knowledge has been acquired into biology and biochemistry. It has become evident that these peptides may be developed into useful antimicrobial additives and drugs. The use of two-peptide antimicrobial peptides as replacement for clinical antibiotics is promising, though their applications in preservation of foods (safe and effective for use in meat, vegetables, and dairy products), in veterinary medicine, and in dentistry are more immediate. This review focuses on the current status of some of the main types of ribosomally synthesized AMPs produced by eucaryotes and procaryotes and discusses the novel antimicrobial functions, new developments, e.g. heterologous production of bacteriocins by lactic acid bacteria, or construction of multibacteriocinogenic strains, novel applications related to these peptides, and future research paradigms.  相似文献   

7.
Papo N  Shai Y 《Biochemistry》2003,42(31):9346-9354
Despite significant advances in cancer therapy, there is an urgent need for drugs with a new mode of action that will preferentially kill cancer cells. Several cationic antimicrobial peptides, which bind strongly to negatively charged membranes, were shown to kill cancer cells slightly better than normal cells. This was explained by a slight increase (3-9%) in the level of the negatively charged membrane phosphatidylserine (PS) in many cancer cells compared to their normal counterparts. Unfortunately, however, these peptides are inactivated by serum components. Here we synthesized and investigated the anticancer activity and the role of peptide charge, peptide structure, and phospholipid headgroup charge on the activity of a new group of diastereomeric lytic peptides (containing D- and L-forms of leucine and lysine; 15-17 amino acids long). The peptides are highly toxic to cancer cells, to a degree similar to or larger than that of mitomycin C. However, compared with mitomycin C and many native antimicrobial peptides, they are more selective for cancer cells. The peptides were investigated for (i) their binding to mono- and bilayer membranes by using the surface plasmon resonance (SPR) technique, (ii) their ability to permeate membranes by using fluorescence spectroscopy, (iii) their structure and their effect on the lipid order by using ATR-FTIR spectroscopy, and (iv) their ability to bind to cancer versus normal cells by using confocal microscopy. The data suggest that the peptides disintegrate the cell membrane in a detergent-like manner. However, in contrast to native antimicrobial peptides, the diastereomers bind and permeate similarly zwitterionic and PS-containing model membranes. Therefore, cell selectivity is probably determined mainly by improved electrostatic attraction of the peptides to acidic components on the surface of cancer cells (e.g., O-glycosylation of mucines). The simple composition of the diastereomeric peptides and their stability regarding enzymatic degradation by serum components make them excellent candidates for new chemotherapeutic drugs.  相似文献   

8.
Peptides, biologically occurring oligomers of amino acids linked by amide bonds, are essential for living organisms. Many peptides isolated as natural products have biological functions such as antimicrobial, antivirus and insecticidal activities. Peptides often possess structural features or modifications not found in proteins, including the presence of nonproteinogenic amino acids, macrocyclic ring formation, heterocyclization, N-methylation and decoration by sugars or acyl groups. Nature employs various strategies to increase the structural diversity of peptides. Enzymes that modify peptides to yield mature natural products are of great interest for discovering new enzyme chemistry and are important for medicinal chemistry applications. We have discovered novel peptide modifying enzymes and have identified: (i) a new class of amide bond forming-enzymes; (ii) a pathway to biosynthesize a carbonylmethylene-containing pseudodipeptide structure; and (iii) two distinct peptide epimerases. In this review, an overview of our findings on peptide modifying enzymes is presented.  相似文献   

9.
The extensive world-wide morbidity and mortality caused by influenza A viruses highlights the need for new insights into the host immune response and novel treatment approaches. Cationic Host Defense Peptides (CHDP, also known as antimicrobial peptides), which include cathelicidins and defensins, are key components of the innate immune system that are upregulated during infection and inflammation. Cathelicidins have immunomodulatory and anti-viral effects, but their impact on influenza virus infection has not been previously assessed. We therefore evaluated the effect of cathelicidin peptides on disease caused by influenza A virus in mice. The human cathelicidin, LL-37, and the murine cathelicidin, mCRAMP, demonstrated significant anti-viral activity in vivo, reducing disease severity and viral replication in infected mice to a similar extent as the well-characterized influenza virus-specific antiviral drug zanamivir. In vitro and in vivo experiments suggested that the peptides may act directly on the influenza virion rather than via receptor-based mechanisms. Influenza virus-infected mice treated with LL-37 had lower concentrations of pro-inflammatory cytokines in the lung than did infected animals that had not been treated with cathelicidin peptides. These data suggest that treatment of influenza-infected individuals with cathelicidin-derived therapeutics, or modulation of endogenous cathelicidin production may provide significant protection against disease.  相似文献   

10.
Several floral microbes are known to be pathogenic to plants or floral visitors such as pollinators. Despite the ecological and economic importance of pathogens deposited in flowers, we often lack a basic understanding of how floral traits influence disease transmission. Here, we provide the first systematic review regarding how floral traits attract vectors (for plant pathogens) or hosts (for animal pathogens), mediate disease establishment and evolve under complex interactions with plant mutualists that can be vectors for microbial antagonists. Attraction of floral visitors is influenced by numerous phenological, morphological and chemical traits, and several plant pathogens manipulate floral traits to attract vectors. There is rapidly growing interest in how floral secondary compounds and antimicrobial enzymes influence disease establishment in plant hosts. Similarly, new research suggests that consumption of floral secondary compounds can reduce pathogen loads in animal pollinators. Given recent concerns about pollinator declines caused in part by pathogens, the role of floral traits in mediating pathogen transmission is a key area for further research. We conclude by discussing important implications of floral transmission of pathogens for agriculture, conservation and human health, suggesting promising avenues for future research in both basic and applied biology.  相似文献   

11.
12.
13.
14.
Molecular strategies in biological evolution of antimicrobial peptides   总被引:6,自引:0,他引:6  
Nicolas P  Vanhoye D  Amiche M 《Peptides》2003,24(11):1669-1680
Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.  相似文献   

15.
16.
Antimicrobial Peptides and their Potential as Oral Therapeutic Agents   总被引:1,自引:0,他引:1  
Dental caries (tooth decay) and periodontal diseases are the most prevalent bacterial infectious diseases of mankind, together affecting almost the entire population of the world. Both diseases are caused by oral bacteria that exist as components of a polymicrobial biofilm, known as dental plaque, on the tooth surface. The control of specific types of bacteria and/or total numbers of bacteria in dental plaque could lead to prevention or resolution of disease. Antimicrobial peptides isolated from a wide range of natural sources have been known for over 30 years yet little progress had been made in the therapeutic application of these peptides. This is due in part to the characteristics, including susceptibility to proteolysis, of the cationic amphipathic antimicrobial peptides that form the majority of peptides discovered to date. Bovine milk is a readily available source of a range of bioactive peptides. We have isolated and characterized a novel anionic antimicrobial peptide, Kappacin, from bovine milk. Antibacterial activity of the peptide is increased when it is complexed with zinc ions. We have demonstrated that a Kappacin:Zn2+ preparation is able to suppress the growth of oral cariogenic bacteria in a biofilm. The Kappacin:Zn2+ antibacterial complex may have potential as an additive to oral care products and other delivery vehicles for the control of oral disease.  相似文献   

17.
Three novel antimicrobial peptides designated ToAMP1, ToAMP2 and ToAMP3 were purified from Taraxacum officinale flowers. Their amino acid sequences were determined. The peptides are cationic and cysteine-rich and consist of 38, 44 and 42 amino acid residues for ToAMP1, ToAMP2 and ToAMP3, respectively. Importantly, according to cysteine motifs, the peptides are representatives of two novel previously unknown families of plant antimicrobial peptides. ToAMP1 and ToAMP2 share high sequence identity and belong to 6-Cys-containing antimicrobial peptides, while ToAMP3 is a member of a distinct 8-Cys family. The peptides were shown to display high antimicrobial activity both against fungal and bacterial pathogens, and therefore represent new promising molecules for biotechnological and medicinal applications.  相似文献   

18.
Anionic antimicrobial peptides (AAMPs) have been identified in a wide variety of plant species with net charges that range between ?1 and ?7 and structures that include: extended conformations, α-helical architecture and cysteine stabilized scaffolds. These peptides commonly exist as multiple isoforms within a given plant and have a range of biological activities including the ability to kill cancer cells as well as phytopathogenic bacteria, fungi, pests, molluscs, and other predatory species. In general, the killing mechanisms underpinning these activities are poorly understood although they appear to involve attack on intracellular targets such as DNA along with compromise of cell envelope integrity through lysis of the cell wall via chitin-binding and/or permeabilisation of the plasma membrane via lipid interaction. It is now becoming clear that AAMPs participate in the innate immune response of plants and make a major contribution to the arsenal of defence toxins produced by these organisms to compensate for their lack of some defence mechanisms possessed by mammals, such as mobility and a somatic adaptive immune system. Based on their biological properties, a number of potential uses for plant AAMPs have been suggested, including therapeutically useful anticancer agents and novel antimicrobial compounds, which could be utilized in a variety of scenarios, ranging from the protection of crops to the disinfection of hospital environments.  相似文献   

19.
Recent studies established that the specificity of phytoimmunity is shaped at the initial stages of genic interactions between a pathogen and its plant host. While elicitors, the products of pathogen avirulence genes (avr-genes), have been already investigated in great detail, there are few studies on the products of plant resistance genes (R-genes) recognizing these elicitors. This review deals with examples of nonspecific and specific elicitors of some R-genes as well as the systems that transduce the elicited signals to the plant genome and evoke immune responses in the plant cells. Several types of immunosuppressors characteristic of pathogens are considered. The molecular-genetic studies of the relations between the pathogens and their plant hosts supplement the already existing arsenal for plant protection with new technologies, such as the genetically engineered plant resistance and the resistance induced by biogenic elicitors.  相似文献   

20.
牛国清  邓宇 《植物学通报》2003,20(4):476-480
天蚕素是一类广泛存在的小分子抗菌肽。从目前所鉴定的天蚕素来看,大多在体外有很强的抗(抑)菌作用,部分在体内也有很好的抗(抑)菌效果。随着对天蚕素及其抗(抑)菌作用机制研究的深入,利用天然、化学修饰的天蚕素基因,通过植物遗传转化途径,在植物抗病育种的研究中取得了很大进展。本文还对天蚕素能否在植物中实现功能性表达进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号