首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
乙酰羟基酸合酶(acetohydroxyacid synthase,AHAS)是生物体内支链氨基酸合成通路中的第一个通用酶,它是目前市售多种除草剂的靶标.AHAS通常由分子质量较大的催化亚基和分子质量较小的调控亚基组成.催化亚基结合催化必需的辅基(FAD、ThDP和Mg2+);调控亚基可以结合终产物(缬氨酸、亮氨酸或异亮氨酸)作为负反馈信号调节全酶的活性.大肠杆菌中AHAS有3个同工酶,每种同工酶都由催化亚基和调控亚基组成.大肠杆菌ilvN基因编码了AHAS同工酶Ⅰ的调控亚基.ilvN基因克隆到pET28a表达载体中,在大肠杆菌BL21(DE3)菌株中得到可溶性的大量表达.表达的蛋白质通过镍离子亲和层析和分子筛层析得到纯化.为了对调控亚基的调节机理有深入了解,对IlvN蛋白进行结晶并对蛋白质与其配体缬氨酸进行共结晶.IlvN蛋白晶体衍射能力为2.6 Å,IlvN与缬氨酸共结晶的晶体衍射能力为3.0 Å.  相似文献   

2.
王飞  李周坤  周杰  崔中利 《微生物学报》2015,55(12):1584-1592
摘要:【目的】DamH是一种具有酯酶活性的酰胺水解酶,其非活性中心氨基酸残基的突变对重组酶可溶性表达和比酶活产生一定的影响。拟探索DamH的活性中心氨基酸残基构成,并对其非活性中心氨基酸残基突变对可溶性表达和比酶活的影响进行研究。【方法】通过重叠延伸的方法对DamH可能的活性中心氨基酸S149、E244和H274以及非活性中心氨基酸D165及N192进行定点突变,通过静息细胞测活验证了S149、E244和H274 在催化2-氯-N-(2’-甲基-6’-乙基苯基)乙酰胺(CMEPA)水解反应中的作用,通过Ni2+- NTA亲和层析对D165及N192突变子进行纯化,对突变株和野生型比酶活进行比较。【结果】研究表明S149A使DamH的CMEPA 水解酶活性下降为野生型的5%,E244A和H274A突变导致其失去活性;D165P和N192P突变影响到DamH的可溶性表达,表达量分别为野生型的28.2%和20.8%,突变子N192P、D165P比酶活分别为野生型比酶活的55.5%和49.7%。【结论】DamH催化酯类底物和芳基酰胺类底物可能共用同一活性中心S149、E244和H274,其两个α螺旋的转角处氨基酸侧链极性和刚性结构的改变对可溶性表达以及活性有很大的影响。  相似文献   

3.
孙笑非  黄星  陈博  李顺鹏  何健 《微生物学报》2008,48(11):1493-1498
乙酰乳酸合酶(也称乙酰羟酸合酶acetohydroxyacid synthase,AHAS)是植物、真菌和细菌细胞内支链氨基酸Val、Leu、Ile生物合成过程中关键酶,是乙酰乳酸合酶抑制剂类除草剂如磺酰脲类、咪唑啉酮类、嘧啶水杨酸和磺酰氨类的作用靶标.[目的]获得抗甲磺隆的乙酰乳酸合酶基因,构建其表达载体,并分析基因中的位点突变与乙酰乳酸合酶对磺酰脲类除草剂抗性产生原因.[方法]从长期使用甲磺隆的土壤中分离到l株抗甲磺隆的菌株Lm10,利用PCR技术从Lm10总DNA中克隆到乙酰乳酸合酶的大小亚基基因ilvIH,对ilvIH氨基酸序列进行比对分析.分别将ilvI和ilvH分别连接到表达载体pET29a( )多克隆位点,转化大肠杆菌(Escherichia coli)获得转化子BL21(pET-I)和BL21(pET-H),并诱导表达.[结果]菌株Lm10鉴定为假单孢菌(Pseudomonas sp.),对甲磺隆的最高耐受浓度达到14000 μmol/L,且对各种乙酰乳酸合酶抑制剂类除草剂具有交叉抗性.Lm10与甲磺隆敏感菌株KT2440的小亚基氨基酸序列完全相同,而大亚基有6个氨基酸位点发生变异.转化子在IPTG诱导下,乙酰乳酸合酶的大小亚基的蛋白成功表达,粗酶液酶活试验结果表明Lm10的ilvI基因表达的乙酰乳酸合酶大亚基对甲磺隆有很强的抗性.[结论]发现菌株Lm10的乙酰乳酸合酶大亚基对甲磺隆有很强的抗性,抗甲磺隆菌株Lm10与敏感菌株KT2440的ilvI有6个氨基酸位点差异,这些位点突变可能是乙酰乳酸合酶对甲磺隆抗性产生的原因.  相似文献   

4.
G蛋白信号调节因子的结构分类和功能   总被引:2,自引:0,他引:2  
Du YS  Huang BR 《生理科学进展》2005,36(3):215-219
G蛋白信号调节因子是能够直接与激活的Gα亚基结合,显著刺激Gα亚基上的GTP酶活性,加速GTP水解,从而灭活或终止G蛋白信号的一组分子大小各异的多功能蛋白质家族。它们都共同拥有一个130个氨基酸的保守的RGS结构域,其功能是结合激活的Gα亚基,负调节G蛋白信号。许多RGS蛋白还拥有非RGS结构域,能够结合其它信号蛋白,从而整合和调节G蛋白信号之间以及G蛋白和其它信号系统之间的关系。  相似文献   

5.
为研究单增李斯特菌(LM)核糖核酸酶Rnase Ⅲ RncS氨基酸突变对RNA降解活性的影响。利用生物信息学软件分析单核细胞增生李斯特菌(LM)野毒株SB5中rncS基因编码的Rnase Ⅲ的结构域,并选择关键氨基酸利用基因重叠延伸PCR(SOE-PCR)技术对其进行了基因突变;然后将rncS突变基因片段D50A、E122A克隆至表达载体pET-32a(+),在大肠杆菌中利用IPTG进行诱导表达;应用SDS-PAGE和Western Blot鉴定重组蛋白的表达情况及其抗原特异性;通过体外酶活试验研究其对RNA降解活性的影响。结构域分析结果显示,LM-Rnase Ⅲ氨基酸序列含有1个双链RNA结合结构域(DSRM)和1个核酸酶结构域(RIBOc),其中结构域RIBOc含有5个活性位点。SDS-PAGE检测结果显示,表达的重组突变型Rnase Ⅲ -D50A和Rnase Ⅲ -E122 A蛋白相对分子质量均为42.5 kD,与理论值相符;Western blot分析表明重组突变型Rnase Ⅲ -D50A和Rnase Ⅲ -E122A蛋白可与LM阳性血清发生免疫学反应。体外酶活实验表明,Rnase Ⅲ发挥降解活性依赖于Mn2+或Mg2+,将其第50位天冬氨酸突变后,Rnase Ⅲ RncS的降解活性有所降低(P0.001);第122位谷氨酸突变后,Rnase Ⅲ RncS降解活性极显著下降(P0.0001),提示第122位谷氨酸是维持LM Rnase Ⅲ RncS酶活性的关键位点。  相似文献   

6.
MUC1蛋白翻译后成为一条多肽链,它很快在内质网被切割成2个亚基,形成稳定的异源二聚体.Cys-Gln-Cys(CQC)3个氨基酸位于MUC1C端亚基跨膜结构域与胞内结构域的连接处.研究发现,MUC1C端的CQCRRK结构域突变成AQARRK或使其缺失,突变体的致瘤性明显降低.表明:通过突变CQC→AQA来阻碍与C端亚基相关的二聚体化,可能成为肿瘤治疗的新途径.  相似文献   

7.
糖苷水解酶第一家族(GH1)β-葡萄糖苷酶(BGL1)有葡萄糖耐受性,进口端位点对酶活性及葡萄糖耐受性有很大影响,但具体作用机制尚不清楚。对嗜热革节孢GH1 BGL1进口端的W168、L173、F348、W349、C169、F180、D237、Y179、A260、H307、N335和E437这12个氨基酸残基进行定点突变,将突变酶与野生酶(WT)在毕赤酵母中表达,表达产物纯化后进行酶活性和葡萄糖耐受性测定。与WT相比,所有突变酶活性均有所降低,其中W168H、N335F和W349G几乎丧失活性。突变F180H、D237S、A260N和H307Y的Km低于WT,所有突变的kcat都降低。除L173Q外,其余突变都保持葡萄糖耐受性,在高浓度(400 mmol/L)葡萄糖时,Y179F和D237S酶活受到显著抑制。本研究表明,进口端位点对酶活性及葡萄糖耐受性均具有一定影响,催化活性通道的结构特异性可能是葡萄糖耐受机制。  相似文献   

8.
利用固定化Rubisco大小亚基解离重组技术,进行水稻和烟草Rubisco大小亚基之间的分子杂交,实验表明,无论同源或异源的小亚基重组到固定化的大亚基上去后,其羧化酶活性没有明显的变化,但对加氧酶活性却有明显的影响。当水稻Rubisco的大亚基同烟草小亚基杂交重组后,其加氧酶活性同固定化水稻Rubisco相比有明显的增高,因而其羧化/氧化比值下降,并且接近于对照的固定化烟草Rubisco。反之,当  相似文献   

9.
乙酰羟酸合成酶(AHAS)是磺酰脲类和咪唑啉酮类等AHAS抑制剂类除草剂的作用靶标。获得抗此类除草剂的AHAS突变基因资源具有非常重要的理论和应用价值。本研究从抗甲磺隆菌株Klebsiella sp.HR11和甲磺隆敏感菌株Klebsiella pneumoniae MGH 78578中分别克隆到AHAS三种同工酶基因ilvBN、ilvGM和ilvIH。抗性菌株和敏感菌株AHAS三种同工酶基因在氨基酸水平上差异位点主要集中在ilvBN和ilvGM的大亚基上。将2株菌的ilvBN、ilvGM和ilvIH分别构建到表达载体pET29a(+)中,在Escherichia coli BL21(DE3)中进行表达,测得只有含菌株HR11 ilvBN和ilvGM的转化子细胞破碎液AHAS对各类AHAS抑制剂类除草剂具有较强的抗性,而含菌株HR11 ilvIH和菌株MGH78578 ilvBN、ilvGM和ilvIH的转化子细胞破碎液AHAS对各类AHAS抑制剂类除草剂敏感。  相似文献   

10.
本研究旨在探讨L-赖氨酸脱羧酶Ldc1E关键氨基酸在底物识别和催化过程中的作用;通过生物信息学方法选择突变位点,并利用直接定点突变技术,完成了6个关键氨基酸残基突变和功能鉴定研究。突变酶D692N最适温度和pH值分别为40℃和6.5。突变酶D692N比野生型Ldc1E对高温具有更强的耐受性,在40℃~55℃温浴1 h后剩余酶活力达到35%以上,在60℃温浴1 h后仍然保留20%的酶活力;而野生型酶Ldc1E在50℃以上温浴1 h后几乎失活。此外,50 mmol/L DMSO、5 mmol/L Al~(3+)和Ca~(2+)对突变酶的酶活力有激活作用,而Al3+对野生型酶Ldc1E具有明显抑制作用。突变酶D692N的分子动力学常数K_m升高了1.78倍,k_(cat)下降了20.2倍。突变酶S221A、H245A、D330A、H366A、F607Y经检测酶催化活性丧失。研究结果表明氨基酸残基位点D692对酶与底物的结合具有重要影响;而S221、H245、D330、H366、F607是Ldc1E酶活性能够体现的关键氨基酸位点,不可替换。本研究为探究L-赖氨酸脱羧酶的结构与功能关系提供理论参考。  相似文献   

11.
In Corynebacterium glutamicum, acetohydroxy acid synthase (AHAS, encoded by ilvBN) is regulated by the end products in biosynthesis pathway, which catalyzes the first common reaction in the biosynthesis of branched-chain amino acids (BCAAs). In this study, conserved A42, A89 and K136 residues in AHAS regulatory subunit were chosen for site-directed mutagenesis, and the resulting mutations A42V, A89V and K136E exhibited higher resistance to inhibition by BCAAs than wild type AHAS. Furthermore, double-mutation was carried out on A42V, A89V and K136E mutations. Expectedly, A42V-A89V mutation exhibited nearly complete resistance to inhibition by all three BCAAs, which retained above 93% enzyme activity even at 10 mM. Strains were further studied to investigate the effects of over-expressing different mutant ilvBN on the biosynthesis of BCAAs. It was found that production of BCAAs was increased with the increase of resistance to BCAAs. However, the increase of isoleucine and leucine was slower than valine which showed a significant increase (up to 86.30 mM). Furthermore, strains harboring plasmids with different mutant ilvBN could significantly decrease production of alanine (main byproduct). This work gives additional understanding of roles of A42, A89 and K136 residues and makes the A42V, A89V, K136E and A42V-A89V mutations a good starting point for further development by protein engineering.  相似文献   

12.
The branched‐chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over‐expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE‐TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map‐based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant‐containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed.  相似文献   

13.
The acetohydroxyacid synthase (AHAS), which is involved in the biosynthesis of branched-chain amino acids (BCAAs), is the target of several classes of herbicides. The catalytic (CSU) and regulatory subunits (RSU) of Mycobacterium tuberculosis AHAS (MtbAHAS) were cloned, expressed, and purified to homogeneity. A homology model of MtbAHAS CSU showed three residues (L141, F147 and W516) at the sulfonylurea (SU) herbicide binding site. The residues were mutated and the variant enzymes characterized with respect to its catalytic properties and sensitivity to two SU herbicides. All the tested mutants showed a decrease in Vmax compared to the wild-type protein. The mutants (F147A, F147R, and W516R) showed strong resistance to the two SU herbicides tested, indicating that the compounds related to these herbicides which target these critical residues, may serve as potent and specific anti-tuberculosis drugs. Furthermore, among the mutants of RSU (S27A, L89A and R101A), the S27A mutation caused 56-fold decrease in Vmax of the holoenzyme, whereas the L89A and R101A showed 4- and 12-fold decrease, respectively. The holoenzymes with S27A and L89A showed resistance to leucine. These results reveal characteristics of SU herbicide-resistant mutants of the CSU, and catalytically important residues of the RSU in MtbAHAS.  相似文献   

14.
15.
Canavan disease is an infantile neurodegenerative disease that is due to aspartoacylase deficiency. The disease has been reported mainly in Ashkenazi Jews but also occurs in other ethnic groups. Determination of enzymatic activity for carrier detection and prenatal diagnosis is considered unreliable. In the present study, nine mutations were found in the aspartoacylase gene of 19 non-Jewish patients. These included four point mutations (A305E [39.5% of the mutated alleles], C218X [15.8%], F295S [2.6%], and G274R [5.3%]); four deletion mutations (827delGT [5.3%], 870del4 [2.6%], 566del7 [2.6%], and 527del6 [2.6%]); and one exon skip (527del108 [5.3%]). The A305E mutation is pan-European and probably the most ancient mutation, identified in patients of Greek, Polish, Danish, French, Spanish, Italian, and British origin. In contrast, the G274R and 527del108 mutations were found only in patients of Turkish origin, and the C218X mutation was identified only in patients of Gypsy origin. Homozygosity for the A305E mutation was identified in patients with both the severe and the mild forms of Canavan disease. Mutations were identified in 31 of the 38 alleles, resulting in an overall detection rate of 81.6%. All nine mutations identified in non-Jewish patients reside in exons 4–6 of the aspartoacylase gene. The results would enable accurate genetic counseling in the families of 13 (68.4%) of 19 patients, in whom two mutations were identified in the aspartoacylase cDNA.  相似文献   

16.
Escherichia coli leucyl-tRNA synthetase (LeuRS) has a large connecting polypeptide (CP1) inserted into its active site. It was demonstrated that the peptide bond between E292–A293 was crucial for the aminoacylation activity of E. coli LeuRS. To investigate the effect of E292 on the function of Escherichia coli LeuRS, E292 was mutated to K, F, S, D, Q and A. These mutations at 292 did not change the specific activity of the amino acid activation reaction. Though the conformational change of these mutants was not detected in CD, their aminoacylation activities were impaired to varying extents. The mutation of E to K decreased the aminoacylation activity to the largest extent. Analysis of the Km values of these mutants for the three substrates showed that the E292 was not involved in the binding of leucine and that all mutants had stronger binding with ATP.  相似文献   

17.
In order to clarify the role of the C-terminal domain of the ilvH protein (the regulatory subunit of enterobacterial AHAS isozyme III, whose structure has been solved and reported by Kaplun et al., J Mol Biol 357, 951, 2006) in the process of valine inhibition of AHAS III, we developed a procedure that randomly mutagenizes a specific segment of a gene through error-prone PCR and screens for mutants on the basis of the properties of the holoenzymes reconstituted in vivo (REM-ivrs). Previous work showed that the N-terminal domain includes the valine-binding ACT domain of the regulatory subunit and is sufficient to completely activate the catalytic subunit, but that this domain cannot confer valine sensitivity on the reconstituted enzyme. It appeared that the C-terminal domain of the ilvH is involved in some way in "signal transmission" of the inhibition by valine. As knowledge of the structure of AHAS holoenzymes and the interactions between the catalytic and regulatory subunits is very limited, a procedure that focuses on the C-terminal domain in the ilvH gene could add to the understanding of the mechanism by which the binding of valine to the regulatory subunit is coupled to inhibition of the catalytic activity. In the REM-ivrs procedure, a medium copy (~40 copies) plasmid expressing ilvH with a Val(r) mutation confers the Val(r) phenotype upon bacteria. All the single missense mutations produced by REM-ivrs were found to be localized to the interface between the C-terminal domains of two monomers in the ilvH dimer. The loss of specific contacts involved in inter-monomer interactions in this region might conceivably disrupt the structure of the C-terminal domain itself. Biochemical study of an isolated Val(r) mutant elicited by the REM-ivrs method detected no binding of radioactively labeled valine, as previously found in a truncation mutant. The idea that the C-terminal domain has a specific "signal-transmission" role was also contradicted by examination of the thermal stability of the Val(r) REM-ivrs variants by the Thermofluor method, which does not detect any signs of biphasic melting behavior for any of the mutants. We propose that the mutants of ilvH isolated by the REM-ivrs method differ from the wild-type in the equilibrium between two states of the enzyme. Without the specific interdomain contacts of the wild-type ilvH protein, the holoenzyme reconstituted from mutant regulatory subunits is apparently in a state with uninhibited activity and low affinity for valine.  相似文献   

18.
Wild biotypes of cultivated sunflower (Helianthus annuus L.) are weeds in corn (Zea mays L.), soybean (Glycine max L.), and other crops in North America, and are commonly controlled by applying acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Biotypes resistant to two classes of AHAS-inhibiting herbicides—imidazolinones (IMIs) or sulfonylureas (SUs)—have been discovered in wild sunflower populations (ANN-PUR and ANN-KAN) treated with imazethapyr or chlorsulfuron, respectively. The goals of the present study were to isolate AHAS genes from sunflower, identify mutations in AHAS genes conferring herbicide resistance in ANN-PUR and ANN-KAN, and develop tools for marker-assisted selection (MAS) of herbicide resistance genes in sunflower. Three AHAS genes (AHAS1, AHAS2, and AHAS3) were identified, cloned, and sequenced from herbicide-resistant (mutant) and -susceptible (wild type) genotypes. We identified 48 single-nucleotide polymorphisms (SNPs) in AHAS1, a single six-base pair insertion-deletion in AHAS2, and a single SNP in AHAS3. No DNA polymorphisms were found in AHAS2 among elite inbred lines. AHAS1 from imazethapyr-resistant inbreds harbored a C-to-T mutation in codon 205 (Arabidopsis thaliana codon nomenclature), conferring resistance to IMI herbicides, whereas AHAS1 from chlorsulfuron-resistant inbreds harbored a C-to-T mutation in codon 197, conferring resistance to SU herbicides. SNP and single-strand conformational polymorphism markers for AHAS1, AHAS2, and AHAS3 were developed and genetically mapped. AHAS1, AHAS2, and AHAS3 mapped to linkage groups 2 (AHAS3), 6 (AHAS2), and 9 (AHAS1). The C/T SNP in codon 205 of AHAS1 cosegregated with a partially dominant gene for resistance to IMI herbicides in two mutant × wild-type populations. The molecular breeding tools described herein create the basis for rapidly identifying new mutations in AHAS and performing MAS for herbicide resistance genes in sunflower.  相似文献   

19.
Chondroitin sulfate (CS) containing GlcA-GalNAc(4,6-SO4) (E unit) and CS containing GlcA(2SO4)-GalNAc(6SO4) (D unit) have been implicated in various physiological functions. However, it has been poorly understood how the structure and contents of disulfated disaccharide units in CS contribute to these functions. We prepared CS libraries containing E unit or D unit in various proportions by in vitro enzymatic reactions using recombinant GalNAc 4-sulfate 6-O-sulfotransferase and uronosyl 2-O-sulfotransferase, and examined their inhibitory activity toward thrombin. The in vitro sulfated CSs containing disulfated disaccharide units showed concentration-dependent direct inhibition of thrombin when the proportion of E unit or D unit in the CSs was above 15–17%. The CSs containing both E unit and D unit exhibited higher inhibitory activity toward thrombin than the CSs containing either E unit or D unit alone, if the proportion of the total disulfated disaccharide units of these CSs was comparable. The thrombin-catalyzed degradation of fibrinogen, a physiological substrate for thrombin, was also inhibited by the CS containing both E unit and D unit. These observations indicate that the enzymatically prepared CS libraries containing various amounts of disulfated disaccharide units appear to be useful for elucidating the physiological function of disulfated disaccharide units in CS.  相似文献   

20.
Summary Spontaneous mutants (146) of Escherichia coli K-12 were selected that were resistant to inhibition of growth by 1.2 mM L-valine (Valr). The Valr isolates, containing acetohydroxy acid synthase resistant to feedback inhibition by L-valine (AHASr), were classed according to cotransduction of the mutation with leu. Several mutations resulting in an AHASr phenotype were found to be cotransducible with glyA. However, no mutations causing a Valr phenotype were linked to ilv. AHAS activity was more closely examined in representatives of three classes of mutants with Valr linked to leu, labeled ilv-660, ilv-661, and ilv-662. The ilvE503 allele in E. coli K-12, known to cause a two- to three-fold derepression of AHAS, was found to affect regulation of synthesis of both valine-sensitive AHAS (AHASs) and AHASr in the mutants containing ilv-660 and ilv-661, whereas it affected repression of AHASs, only, in the mutant containing ilv-662. Further, both AHASs and AHASr in the ilv-661 mutant were repressed by valine, whereas valine did not repress AHASr synthesis in the strain carrying ilv-660 and only partially repressed AHASr in the strain carrying ilv-662. Unexpectedly, AHASr synthesis in strains carrying ilv-660 or ilv-662 was repressible by leucine. The ilv-660 locus appears to be similar in position to ilvH and encodes a product that confers valine-sensitivity upon AHAS activity in the wild-type E. coli K-12. The ilv-660 and ilv-662 loci may normally encode products that influence both the feedback sensitivity of AHAS and control of AHAS biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号