首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
目的探讨缝隙连接阻断剂甘珀酸对大鼠大脑中动脉(Middle Cerebral Artery,MCA)缺血再灌注模型半暗带区星形胶质细胞增殖及活化的影响。方法成年雄性SD大鼠80只,随机分为生理盐水组(n=35)、CBX干预组(n=35)和假手术组(n=10)。CBX干预组术前1h右侧侧脑室注射CBX,生理盐水组右侧侧脑室注射生理盐水,建立标准大脑中动脉梗死模型,缺血1h后再灌注6h、1d、3d、7d,免疫荧光及免疫印迹的方法观察GFAP,Ki67,PCNA的表达情况。结果与对照组比较,CBX干预组大鼠术后半暗带区GFAP的表达量减少,Ki67与GFAP双阳性细胞减少(P0.05),PCNA的表达量没有明显的变化。结论甘珀酸可以抑制缺血引起的星形胶质细胞的活化增殖。  相似文献   

2.
研究大鼠在福尔马林诱发胃伤害性刺激时脑干内星形胶质细胞及神经元的变化。应用免疫组织化学三重标记法在脑原位切片同时显示脑干内Fos蛋白,胶质原纤维酸性蛋白(GFAP),酪氨酸羟化酶(TH)的表达,结果显示:1、在福尔马林诱发胃伤害性刺激后,脑干胶质细胞GFAP表达阳性,并表现出明显的核团或亚核定位特点,在延髓内脏带(MVZ0,中缝大核(RMg),蓝斑(LC),臂旁外侧核(LPB),中缝背核(DR),中脑导水管周围灰质腹外侧区(vlPAG),上丘中灰层(IngSC)等脑区有较多的Fos阳性细胞,而且Fos阳性表达的分布与上述GFAP阳性分布基本一致;2、MVZ,LC,DR,vlPAG等部位有大量Fos及TH双标阳性神经元,周围有密集的GFAP阳性细胞;3、随着刺激后存活时间的变化,GFAP与Fos阳性细胞的反应均经历逐渐升高后又渐降低直至消失的变化。结果表明:上述核团的神经元和星形胶质细胞可能同时参与了内脏痛及其调节过程。  相似文献   

3.
目的:研究电针足三里穴对糖尿病胃轻瘫大鼠延髓多巴胺能神经元内酪氨酸羟化酶(tyrosine hydroxylase,TH)和星形胶质细胞内胶质原纤维酸性蛋白(Glial Fibrillary Acidic Protein,GFAP)表达的影响。方法:32只实验大鼠分为空白对照(空白)组、糖尿病胃轻瘫模型(模型)组、模型组+电针足三里穴(足三里)组和模型组+电针非经非穴(非经非穴)组(每组8只)。模型制备采用腹腔注射5%四氧嘧啶和熟地灌胃诱导的方法。实验3周后取大鼠延髓进行抗TH和抗GFAP的单一和双重免疫组化染色,观察并记数TH和GFAP在延髓内的表达。结果:与空白组比较,各实验组TH阳性多巴胺能神经元和GFAP阳性星形胶质细胞集中表达于延髓迷走孤束复合体内,有明显的定位特点;高倍镜下观察到TH阳性神经元周围有大量GFAP阳性星形胶质细胞包绕。各组TH和GFAP表达以模型组最高;而足三里组TH阳性多巴胺能神经元数量明显减少(31.3±4.4→16.8±3.2),GFAP阳性产物表达明显降低(113.8±7.6→95.4±8.4),且它们之间有统计学意义(P<0.01);非经非穴组与模型组之间差异没有统计学意义。结论:针刺调节糖尿病胃运动功能障碍大鼠与其调控延髓多巴胺能神经元及其周围的星形胶质细胞功能活动有关。  相似文献   

4.
为了研究大鼠“延髓内脏带”投射至缰核之儿茶酚胺能神经元在躯体伤害性刺激后的c-fos表达,使用了WGA-HRP逆行追踪法与抗Fos和抗酪氨酸羟化酶(TH)免疫组织化学染色结合的三重标记方法。将WGA-HRP定位注射入右侧缰核,48h后向右前爪跖部皮下注射50ml8%For-malin,2h后动物被处死,用500ml含4%多聚甲醛的0.1mol/L磷酸缓冲液(PB,pH7.4)灌流固定。取出WGA-HRP注射区,脊髓颈段和延髓,切制连续冠状冰冻切片(厚40μm)。首先用四甲基联苯胺(TMB)对WGA-HRP注射区和延髓切片进行组织化学反应,然后脊髓和延髓切片先进行抗Fos的免疫组化染色,延髓切片再进行抗TH的免疫组化反应。结果在光镜下于延髓内脏带区观察到七种标记神经元,即Fos、TH抗标记神经元,HRP逆行标记神经元;Fos/HRP、Fos/TH、HRP/TH双标记神经元。和Fos/HRP/TH三标记神经元。本文结果证明:延髓内脏带内某些投射至缰核的儿茶酚胺能神经元可能参与躯体伤害性刺激的传导和调控。  相似文献   

5.
甘珀酸干预对大鼠脑缺血再灌注损伤的影响   总被引:1,自引:0,他引:1  
目的观察缝隙连接阻断剂甘珀酸对局灶性脑缺血/再灌注损伤的影响。方法采用大鼠大脑中动脉阻塞再灌流模型(MCAO),将动物随机分为脑缺血60min再灌注(MCAO)组,脑缺血再灌注加甘珀酸干预(MCAO+CBX)组和假手术组(sham)。采用尼氏染色显示脑梗死灶并计算梗死灶体积;应用免疫荧光与TUNEL染色法分别观察脑缺血后3d与7d不同时间点缺血边缘区胶质纤维酸性蛋白(GFAP)的表达和细胞凋亡情况。结果(1)缺血后3d、7d MCAO+CBX组大鼠梗死体积小于MCAO组,3d、7d MCAO+CBX组大鼠梗死体积较MCAO组分别缩小5%和4.6%;(2)缺血后3d、7d于缺血边缘区可见大量TUNEL阳性染色细胞,且MCAO组大鼠缺血边缘区细胞凋亡数目明显多于MCAO+CBX大鼠(P〈0.001);(3)缺血后3d和7d组缺血边缘区GFAP表达明显增强,3d的MCAO组与MCAO+CBX组大鼠缺血边缘区GFAP的表达均较假手术组强(P〈0.05),7d的MCAO+CBX组大鼠缺血边缘区GFAP的表达较假手术组强(P〈0.001),但明显弱于MCAO组大鼠(P〈0.01);结论缝隙连接阻断剂甘珀酸可减少大鼠大脑中动脉阻塞后脑梗死体积,其机制可能与阻断缝隙连接后缺血边缘区神经元凋亡降低有关,星型胶质细胞的反应性变化参与了该过程。  相似文献   

6.
目的:研究HLRP分子在大鼠脑中的细胞定位和表达特点,观察LPS刺激对动物脑HLRP表达的影响。方法:对原代培养的大鼠神经元、星形胶质细胞、小胶质细胞和大鼠脑组织冰冻切片分别进行免疫荧光染色,观察HLRP的细胞定位和表达特点;给大鼠侧脑室注射LPS,提脑组织蛋白,进行Western blot检测,半定量分析LPS刺激后,大鼠脑HLRP的表达变化。结果:①HLRP选择性表达于部分神经元的细胞核中,正常的星形胶质细胞和小胶质细胞不表达HLRP。②从嗅脑到脑干各节段,HLRP在大鼠脑组织中均匀分布,未发现HLRP阳性神经元聚集的现象。③侧脑室注射LPS 1天以后,HLRP表达明显升高(P<0.05)。结论:大鼠脑中正常表达HLRP,侧脑室注射LPS能刺激HLRP表达。  相似文献   

7.
目的探讨阻断缝隙连接(gap junction)通讯对大鼠局灶性脑缺血后海马迟发性神经元死亡(delayed neuronal death,DND)及Bcl-2蛋白表达的影响。方法术前2h左侧脑室注射缝隙连接阻断剂甘珀酸(carbenoxolone,CBX),对照组左侧脑室注射生理盐水,颈内动脉插线法制备大鼠大脑中动脉缺血再灌注模型,采用DNA原位末端标记TUNEL技术及免疫荧光技术,观察阻断缝隙连接对大鼠局灶性脑缺血3d后海马迟发性神经元死亡及BCL-2蛋白表达的影响。结果不给予缝隙连接阻断剂,大脑中动脉缺血模型有45%的大鼠在术后3d出现海马迟发性神经元死亡;用甘珀酸阻断缝隙连接后,30%的大鼠出现海马迟发性神经元死亡,其发生率明显减小(P<0.01);与对照组相比,干预组Bcl-2蛋白的表达较高(P<0.01),两组Bcl-2蛋白的表达均高于假手术组(P<0.01)。结论阻断缝隙连接通讯可以减少局灶性脑缺血后海马迟发性神经元死亡的发生率,Bcl-2参与了局灶性脑缺血后海马神经元凋亡的调节。  相似文献   

8.
Tang M  Zhang HY  Jiang ZY  Xu L  Peeters TL 《生理学报》2000,52(5):416-420
用核团或侧脑室微量注射、微电极细胞外单位放电记录及清醒动物胃运动记录等方法,观察了大鼠下丘脑腹内侧区(ventral medial hypothalamus,VMH)或侧脑室内(icv)微量注入胃动素(motilin)对延髓迷走复合体(dorsal vagal complex,DVC)神经元电活动和胃运动的影响。结果表明:(1)VMH注入胃动素会改变DVC胃相关神经元的电活动;(2)VMH及侧脑室  相似文献   

9.
目的揭示星形胶质细胞对大鼠脑内及培养的神经元磷脂酶Cβ1(PLCβ1)的影响及其在癫痫发病中的作用。方法将马桑内酯激活的星形胶质细胞条件培养液(astrocyte-conditioned medium,ACM)注射入正常SD大鼠侧脑室,观察大鼠的行为变化;运用免疫组织化学方法,观察大鼠大脑皮质、海马内PLCβ1免疫反应的变化;将培养的神经元随机分为2组:1.对照组(无血清培养基组),2.ACM组。各组细胞分别培养4、8、12h后,免疫细胞化学方法观察培养神经元内PLCβ1表达的变化,Western blot法检测各组培养神经元PLCβ1含量的变化。结果ACM组大鼠在注射ACM后30 min出现癫痫行为,2 h恢复正常;免疫组织化学显示:ACM作用后4h,大鼠大脑皮质、海马PLCβ1免疫反应阳性神经元数和平均光密度值显著增高(P<0.05);培养神经元的免疫细胞化学染色证明ACM组在作用4h时PLCβ1免疫阳性反应产物明显增加,与对照组比较有明显差异(P<0.05);Western blot结果表明PLCβ1含量在ACM作用4h较对照组明显增多(P<0.05)。结论马桑内酯激活的星形胶质细胞条件培养液可上调大鼠脑内及培养的神经元内PLCβ1的表达,并导致动物痫性发作。  相似文献   

10.
目的探讨星形胶质细胞对大鼠脑内谷氨酸(Glu)和γ-氨基丁酸(GABA)的影响及其在癫痫发病中的作用。方法将马桑内酯激活的星形胶质细胞条件培养液(astrocyte-conditioned medium,ACM)注射入正常SD大鼠侧脑室,观察大鼠的行为变化,运用免疫组织化学及HPLC的方法,观察大鼠大脑皮质、海马内Glu和GABA免疫反应的变化及脑组织匀浆、脑脊液内Glu和GABA含量的变化。结果ACM组大鼠在注射ACM后30min出现癫痫行为,2h恢复正常。免疫组织化学显示:ACM作用后2h,大鼠大脑皮质及海马内Glu免疫反应阳性神经元数和平均光密度值明显增高,4h达高峰(P<0.05),12h恢复正常水平;ACM作用后2h,大鼠大脑皮质及海马GABA免疫反应阳性神经元数和平均光密度值明显减弱(P<0.05),12h恢复正常水平。HPLC方法显示:ACM作用后2h大鼠大脑皮质、海马及脑脊液中Glu含量均开始增加,4h达高峰(P<0.05);ACM作用后2h大脑皮质、海马及脑脊液中GABA含量均开始降低,4h达最低(P<0.05)。结论马桑内酯激活的星形胶质细胞条件培养液可影响大鼠脑内Glu和GABA的表达,并导致动物痫性发作。  相似文献   

11.
The beneficial or detrimental role of gap junction communication in the pathophysiology of brain injury is still controversial. We used co-cultures of hippocampal astrocytes and neurons, where we identified homocellular astrocyte-astrocyte and heterocellular astrocyte-neuron coupling by fluorescence recovery after photobleaching, which was decreased by the gap junction blocker carbenoxolone (CBX). In these cultures, we determined the cell type-specific effects of CBX on the excitotoxic damage caused by N-methyl-D-aspartate (NMDA). We determined in both astrocytes and neurons the influence of CBX, alone or together with NMDA challenge, on cytotoxicity using propidium iodide labeling. CBX alone was not cytotoxic, but CBX treatment differentially accelerated the NMDA-induced cell death in both astrocytes and neurons. In addition, we measured mitochondrial potential using rhodamine 123, membrane potential using the oxonol dye bis(1,3-diethylthiobarbituric acid)trimethine oxonol, cytosolic Ca(2+) level using fura-2, and formation of reactive oxygen species (ROS) using dihydroethidium. CBX alone induced neither an intracellular Ca(2+) rise nor a membrane depolarization. However, CBX elicited a mitochondrial depolarization in both astrocytes and neurons and increased the ROS formation in neurons. In contrast, NMDA caused a membrane depolarization in neurons, coinciding with intracellular Ca(2+) rise, but neither mitochondrial depolarization nor ROS production seem to be involved in NMDA-mediated cytotoxicity. Pre-treatment with CBX accelerated the NMDA-induced membrane depolarization and prevented the repolarization of neurons after the NMDA challenge. We hypothesize that these effects are possibly mediated via blockage of gap junctions, and might be involved in the mechanism of CBX-induced acceleration of excitotoxic cell death, whereas the CBX-induced mitochondrial depolarization and ROS formation are not responsible for the increase in cytotoxicity. We conclude that both in astrocytes and neurons gap junctions provide protection against NMDA-induced cytotoxicity.  相似文献   

12.
下丘脑室旁核加压素能神经元参与电针刺激对实验性...   总被引:3,自引:0,他引:3  
龚珊  殷伟平 《生理学报》1992,44(5):434-441
It has been demonstrated in animal model of somatic pain that hypothalamic paraventricular nucleus (PVN) participates in acupuncture analgesia, probably by mediation of vasopressin release. The role of PVN in acupuncture analgesia for experimental visceral pain in rats was further investigated in the present study. Experimental results demonstrated that electroacupuncture could inhibit the writhing response, produced by intraperitoneal injection of antimonium potassium tartrate and this inhibitory effect could be enhanced by electrical stimulation of PVN, but decreased by electrolytical lesion of PVN, intracerebroventricular injection of vasopressin antiserum (14 microliters) or the vasopressin antagonist, d(CH2)5Tyr(Me)-AVP (500 ng/5 microliters). Intraperitoneal administration of the latter drug (10 micrograms/kg), however, was ineffective. The above experimental results suggest that vasopressinergic neurons in PVN also participate in the inhibition of visceral pain by electroacupuncture.  相似文献   

13.
Zhang Y  Gong K  Zhou W  Shao G  Li S  Lin Q  Li J 《Neuro-Signals》2011,19(3):142-150
Protein kinase C (PKC) has been widely reported to participate in somatic pain; however, its role in visceral pain remains largely unclear. Using a colon inflammatory pain model by intracolonic injection of formalin in rats, the present study was to examine the role of PKC in visceral pain and determine which subtypes may be involved. The colon pain behavior induced by formalin injection could be enhanced by intrathecal pretreatment with a PKC activator (PMA), and alleviated by a PKC inhibitor (H-7). Wide dynamic range (WDR) neurons in the L6-S1 spinal dorsal horn that were responsive to colorectal distension were recorded extracellularly. It was found that neuronal activity was greatly increased following formalin injection. Microdialysis of PMA near the recorded neuron in the spinal dorsal horn facilitated the enhanced responsive activity induced by formalin injection, while H-7 inhibited significantly the enhanced response induced by formalin injection. Western blot analysis revealed that membrane translocation of PKC-γ and PKC-ε, but not other subtypes, in the spinal cord was obviously increased following formalin injection. Therefore, our findings suggest that PKC is actively involved in the colon pain induced by intracolonic injection of formalin. PKC-γ and PKC-ε subtypes seem to significantly contribute to this process.  相似文献   

14.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell–cell and cell–neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes. Dev. Genet. 21:187–200, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Abstract: Reactive gliosis, which occurs in response to damage to the central nervous system, has been recognized for years but is not yet understood. We describe here a tissue culture model of reactive astrocytes used to characterize their properties. Cultures are prepared 1 week following 6-hydroxydopamine (6-OHDA) lesion of rat substantia nigra and compared with astrocytes cultured from normal adult rats or rats injected with saline only. Astrocytes from the 6-OHDA-lesioned side contained elevated levels of glial fibrillary acidic protein (GFAP) and GFAP mRNA and were intensely immunoreactive for GFAP, vimentin, and two epitopes that in vivo are found only on reactive astrocytes. The basal content of nerve growth factor (NGF) mRNA and NGF in astrocytes from 6-OHDA-lesioned rats was significantly higher relative to control astrocytes. Two inflammatory cytokines, interleukin-1β and interferon-γ, increased synthesis of NGF up to 20-fold in the reactive cells, whereas there was no response in the normal adult astrocytes. Astrocytes from postnatal day 2 rats shared many of the properties of the reactive adult astrocytes. These cultures offer the possibility to characterize the cellular and molecular properties of reactive astrocytes and to determine the factors responsible for activation of astrocytes.  相似文献   

16.
目的:探讨三七总皂苷预处理对急性内脏痛大鼠的影响,初步阐述三七总皂苷对急性内脏痛的影响机制。方法:成年雌性SD大鼠54只随机分为正常组(n=6),生理盐水预处理组(n=24),三七总皂苷预处理组(n=24)。正常组常规条件饲养,不做干预及建立急性内脏痛模型;生理盐水预处理组和三七总皂苷预处理组大鼠分别预先腹腔注射生理盐水(2.86 ml/kg)或7 mg/ml的三七总皂苷(2.86 ml/kg),每12 h一次,连续7 d,第8天腹腔注射1%乙酸(10 mg/kg),建立急性内脏痛模型,立即观测SD大鼠扭体反应。按(30、60、90、180 min)不同存活时间处死动物,免疫组化法观测脊髓背角GFAP的表达变化。结果:VPI评分显示,三七总皂苷能显著下调内脏痛模型VPI评分,减轻疼痛。免疫组化显示在相同时间点,三七总皂苷预处理组大鼠GFAP表达弱于生理盐水预处理组,尤其在30、60、90 min存活组。结论:对SD大鼠急性内脏痛模型预先腹腔注射三七总皂苷可以抑制脊髓胶质细胞激活,从而减轻急性内脏痛。  相似文献   

17.
During embryonic development, cells not only increase in number, they also undergo specialization and differentiate into diverse cell types that are organized into different tissues and organs. Nervous system development, for example, involves a complex series of events such as neuronal and astroglial differentiation that are coordinated among adjacent cells. The organization of growth and differentiation may be mediated, at least partly, by exchange of small ions and molecules via intercellular gap junction channels. These structures are mode of connexons (hemichannels), which are hexameric assemblies of the gap junction proteins, connexins. We investigated the role of intercellular communication in neuronal and astroglial differentiation by using a gap junction blocking agent, carbenoxolone (CBX), in comparison to its inactive (control) analog, glycyrrhizic acid (GZA). We used the mouse P19 embryonal carcinoma cell line, which differentiates into neurons and astrocytes upon retinoic acid (RA) induction. Our results show that both GZA- and CBX-treated cells express alpha 1 connexin (connexin43). The level of alpha 1 connexin decreases upon RA induction. CBX treated cells show significant reduction in both neuronal (5-fold) and astrocytic (13-fold) differentiation compared with those of control. These results clearly indicate that the blockage of gap junction-mediated intercellular communication interferes with differentiation of P19 cells into neurons and astrocytes.  相似文献   

18.
Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20–24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号