首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transgenic hairy roots were induced from petiole and root segments of in vitro plant Aralia elata, a medicinal woody shrub, after co-cultivation with A. rhizogenes ATCC 15834. The percentage of putative hairy root induction from root segments was higher (26.7%) than petiole explants (10.0%). Hairy roots showed active production of lateral roots with vigorous elongation. Transgenic plants were regenerated from hairy roots via somatic embryogenesis. These plants had wrinkled leaves, short petioles and numerous lateral hairy roots. The RT-PCR analysis showed the expression of rol A, B, C, D, aux 1 and 2 genes differed between the transgenic lines. Endogenous IAA level was higher in transgenic than non-transgenic plants. Conclusively, transgenic hairy roots were developed for first time in A. elata and the transgenic hairy root lines showed distinct morphological growth pattern and gene expression.  相似文献   

2.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   

3.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   

4.
Hairy root cultures of Hypericum perforatum were obtained following inoculation of aseptically germinated seedlings with A. rhizogenes strain A4M70GUS. Effect of sucrose on the growth and biomass production of hairy root cultures was investigated. Hairy root cultures spontaneously regenerated shoots buds from which a number of shoot culture clones was established. Transformed shoot cultures exhibited good shoot multiplication, elongation and rooting on a hormone-free woody plant medium. Plants regenerated from hairy roots were similar in appearance to the normal, nontransformed plants.  相似文献   

5.
Root of Glycyrrhiza uralensis, one of the most important medicinal plants, containing bioactive triterpene saponins (glycyrrhizin). Squalene synthase (SQS) plays a regulatory role in the biosynthesis of triterpene saponins. In the present investigation, SQS coding sequence from G. uralensis was cloned by polymerase chain reaction (PCR) and a transgenic system was developed for G. uralensis through Agrobacterium rhizogenes-mediated transformation. The SQS gene placed under a CaMV 35S promoter was transferred into G. uralensis using A. rhizogenes strain ACCC10060. The transformed hairy roots were selected on Murashige and Skoog (1962)-containing phosphinothricin (PPT) and root lines were established. The integration of SQS gene was confirmed by PCR and Southern blot. Three transgenic root lines UP1, UP24, UP31 were obtained and their growth rates were detected. The result showed that transgenic root lines but UP1 line grew faster than control hairy roots; high-performance liquid chromatography (HPLC) analysis demonstrated the highest glycyrrhizin content of transgenic roots was 2.5 mg/g dry weight and was about 2.6 times higher than control hairy roots. The nucleotide sequences GuSQS1 and GUSQS2 reported in this paper appear in the EMBL nucleotide sequence database with the accession number AM182329 and AM182330, respectively.  相似文献   

6.
A procedure for the production of fertile transgenic brassicas via Ri-mediated transformation is reported in this paper. Transgenic hairy root lines were selected for 12 vegetable brassica cultivars and lines representing six varieties: broccoli, Brussels sprouts, cabbage, cauliflower, rapid-cycling (allBrassica oleracea) and Chinese cabbage (B. campestris). Leaf explants or petioles of intact cotyledons were co-cultivated withAgrobacterium strain A4T harbouring various binary vectors. The T-DNA region of all binary vectors contained a neomycin phosphotransferase II gene for kanamycin resistance, in addition to other genes. Hairy root lines grew prolifically on hormone-free medium containing kanamycin. Transgenic shoots were regenerated from all cultivars either spontaneously or after transfer of hairy roots to a hormone-containing medium. Southern analysis confirmed that the plants were transgenic. Plants from all brassica types were successfully transferred to greenhouse conditions. Plants were fertile and segregation analysis confirmed transmission of traits to progeny.Abbreviations BA 6-Benzylaminopurine - GUS -Glucuronidase - LS Linsmaier and Skoog medium - NAA I-Naphthaleneacetic acid - NPTII Neomycin phosphotransferase II - TDZ thidiazuron  相似文献   

7.
In this paper we describe the production of transgenic broccoli and cauliflower with normal phenotype using an Agrobacterium rhizogenes-mediated transformation system with efficient selection for transgenic hairy-roots. Hypocotyls were inoculated with Agrobacterium strain A4T harbouring the bacterial plasmid pRiA4 and a binary vector pMaspro::GUS whose T-DNA region carried the gus reporter gene. pRiA4 transfers TL sequences carrying the rol genes that induce hairy root formation. Transgenic hairy-root production was increased in a difficult-to-transform cultivar by inclusion of 2,4-D in the medium used to resuspend the Agrobacterium prior to inoculation. Transgenic hairy roots could be selected from inoculated explants by screening root sections for GUS activity; this method eliminated the use of antibiotic resistance marker genes for selection. Transgenic hairy roots were produced from two cauliflower and four broccoli culivars. Shoots were regenerated from transgenic hairy root cultures of all four cultivars tested and successfully acclimatized to glasshouse conditions, although some plants had higher than diploid ploidy levels. Southern analysis confirmed the transgenic nature of these plants. T0 plants from seven transgenic lines were crossed or selfed to produce viable seed. Genetic analysis of T1 progeny confirmed the transmission of traits and revealed both independent and co-segregation of Ri TL-DNA and vector T-DNA. GUS-positive phenotypically normal progeny free of TL-DNA were identified in three transgenic lines out of the six tested representing all the cultivars regenerated including both cauliflower and broccoli.  相似文献   

8.
The balloon flower (Platycodon grandiflorum) is a popular traditional medicinal plant used in Korea to treat conditions such as bronchitis, asthma, tuberculosis, diabetes, and inflammatory diseases. Recently, immunopharmacological research identified triterpenoid and saponin as important active compounds in P. grandiflorum. To study and extract these compounds and other metabolites from P. grandiflorum, a technique was developed for producing hairy root cultures, which are a reliable source of plant compounds. To achieve this, the activity of Agrobacterium rhizogenes was exploited, which can transfer DNA segments into plant genomes after infecting them. In this study, the A. rhizogenes strain R1000 was determined that had the highest infection frequency (87.5%) and induced the most hairy roots per plant, and the concentration of antibiotics (75 mg/l kanamycin) was elucidated for selection after transformation. Wild-type and transgenic hairy roots contained various phenolic compounds, although both of them had similar concentrations of phenolic compounds. In the future, the protocols described here should be useful for studying and extracting valuable metabolites such as phenolic compounds from P. grandiflorum hairy root cultures.  相似文献   

9.
Angelica gigas is a medicinal plant that produces pyranocoumarins, including decursin (D) and decursinol angelate (DA), which have neuroprotective, anticancer, and antiandrogenic effects. In this study, the coumarin biosynthetic pathway was engineered to increase the production of DA. Specifically, a vector was constructed which contained the A. gigas phenylalanine ammonia-lyase (AgPAL) and cinnamate 4-hydroxylase (AgC4H) genes that were driven by the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic hairy roots that overexpressed AgPAL or AgC4H genes were obtained by using an Agrobacterium rhizogenes-mediated transformation system. Among them, only AgC4H-transgenic hairy root lines produced more DA than control transgenic hairy root lines. The enhanced gene expression corresponded to elevated C4H activities. This study showed the importance of C4H in the production of DA in A. gigas hairy root culture.  相似文献   

10.
Transgenic hairy root system is important in several recalcitrant plants, where Agrobacterium tumefaciens-mediated plant transformation and generation of transgenic plants are problematic. Jute (Corchorus spp.), the major fibre crop in Indian subcontinent, is one of those recalcitrant plants where in vitro tissue culture has provided a little success, and hence, Agrobacterium-mediated genetic transformation remains to be a challenging proposition in this crop. In the present work, a system of transgenic hairy roots in Corchorus capsularis L. has been developed through genetic transformation by Agrobacterium rhizogenes harbouring two plasmids, i.e. the natural Ri plasmid and a recombinant binary vector derived from the disarmed Ti plasmid of A. tumefaciens. Our findings indicate that the system is relatively easy to establish and reproducible. Molecular analysis of the independent lines of transgenic hairy roots revealed the transfer of relevant transgenes from both the T-DNA parts into the plant genome, indicating the co-transformation nature of the event. High level expression and activity of the gusA reporter gene advocate that the transgenic hairy root system, thus developed, could be applicable as gene expression system in general and for root functional genomics in particular. Furthermore, these transgenic hairy roots can be used in future as explants for plantlet regeneration to obtain stable transgenic jute plants.  相似文献   

11.
The objective of this research was to establish an efficient system of genetic transformation and plant regeneration from hairy roots by infecting the leaf sections and stem segments of in vitro Rehmannia glutinosa Libosch. f. hueichingensis Hsiao plantlets. Hairy roots were induced from them after co-culturing with Agrobacterium rhizogenes strain 15834 at a frequency of 32 and 29.4%, respectively. The calluses were induced from hairy roots on half-strength Murashige and Skoog medium containing 0.2 mg/l kinetin and 3.0 mg/l benzyladenine at a frequency of 100%, from which transgenic shoots and plantlets were developed. Transgenic plantlets did not have differences in morphology except the shortened internodes and an increase in adventitious root formation compared to wild-type plants. PCR and Southern-blot analyses confirmed that rolB gene of TL-DNA was inserted in the genome of transformed hairy roots and plantlets. RT-PCR analysis and opine paper electrophoresis revealed that rolB gene was expressed in the transformed hairy roots and plantlets. Conclusively, transgenic hairy roots and transgenic plants of Rehmannia glutinosa Libosch. f. hueichingensis Hsiao were developed for the first time. This text was submitted by the authors in English. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 2, pp. 247–255.  相似文献   

12.
We investigated the effect of Agrobacterium rhizogenes-mediated transformation on antioxidant activity of Artemisia vulgaris “hairy” roots. It appeared that transformation may increase flavonoid content as well as DPPH-scavenging activity and ability to reduce Fe3+ as compared to the non-transformed plants. Some “hairy” roots accumulated flavonoids up to 73.1?±?10.6?mg RE/g DW (while the amount of flavonoids in the leaves of non-transformed plants was up to 49.4?±?5.0?mg RE/g DW). DPPH-scavenging activity of some “hairy” root lines was 3–3.8 times higher than such one of the roots of the control plants. The Fe3+-reducing power of most transgenic root extracts exceeded such power of the extracts of the roots of the control plants. The decrease in SOD activity was found in the most “hairy” root lines compared to the control roots. The increase of flavonoid content correlated with the increase of ability of extracts to scavenge DPPH*- radical and Fe3+ - reducing power. No correlation between SOD activity of extracts and concentration of flavonoids was found (p?≥?0.2).Thus, transformation has led to the alteration in flavonoid accumulation and antioxidant activity in A. vulgaris “hairy” roots. Transgenic roots with high-antioxidant properties can be selected after A. rhizogenes-mediated transformation.  相似文献   

13.
Susceptibility of C. rubrum to Agrobacterium-mediated transformation was demonstrated by inoculating the petioles of in vitro grown plants with A. rhizogenes strain A4M70GUS. Hairy roots were produced in 8 % of explants. They were isolated and maintained on plant growth regulator-free solid or liquid half-strength Murashige and Skoog medium for two years. Hairy root fresh mass increased 30 — 90 folds when grown in liquid medium, which was superior to solid medium, where most of the hairy roots produced calli. When these calli were grown on medium supplemented with 0.5 mg dm-3 thidiazuron, embryo-like structures were obtained. Transgenic status of long-term callus and hairy root cultures was confirmed by histochemical GUS assay, by PCR specific to the uidA, rolA&B and ags genes and by Southern hybridization.  相似文献   

14.
Hairy root research: recent scenario and exciting prospects   总被引:3,自引:0,他引:3  
High stability of the production of secondary metabolites is an interesting characteristic of hairy root cultures. For 25 years, hairy roots have been investigated as a biological system for the production of valuable compounds from medicinal plants. A better understanding of the molecular mechanism of hairy root development, which is based on the transfer of Agrobacterium rhizogenes T-DNA into the plant genome, has facilitated its increasing use in metabolic engineering. Hairy roots can also produce recombinant proteins from transgenic roots, and thereby hold immense potential for the pharmaceutical industry. In addition, hairy roots offer promise for phytoremediation because of their abundant neoplastic root proliferation. Recent progress in the scaling-up of hairy root cultures is making this system an attractive tool for industrial processes.  相似文献   

15.
Hairy root cultures of Atropa belladonna L. were established by infection either with Agrobacterium rhizogenes ATCC 15834 or MAFF 03-01724, and transgenic plants were obtained from both hairy root cultures. Doubly transformed roots were induced by re-infection of the leaf segments of transgenic Atropa belladonna plants (A. rhizogenes 15834) with MAFF 03-01724. Shoots and viviparous leaves were regenerated from the doubly transformed roots. The genetic transformation was determined by the opine assay (agropine, mannopine and/or mikimopine) and polymerase chain reaction. Physiological changes and tropane alkaloid biosynthesis in the hairy roots (singly and doubly transformed) were investigated. The alkaloid content in the doubly transformed root strain was intermediate as compared to the root strains which were singly transformed. On the other hand endogenous IAA levels in doubly transformed roots were significantly decreased compared to both singly transformed roots.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - PCR polymerase chain reaction - t-ZR trans-zeatin  相似文献   

16.
Triterpenic saponins represented in Calendula officinalis L. by oleanolic acid (OA) glycosides are pentacyclic triterpene compounds with a wide range of biological and medicinal properties. This report demonstrates nitrogen source impact on growth, saponin accumulation, and secretion in hairy root and suspension cultures of marigold. Hairy roots preferred nitrate as a mineral source of nitrogen, but its impact on growth, OA glycosides accumulation, and secretion were line-dependent. The best productivity of OA glycosides was found in CC16 line (74.86 mg flask?1) in ½ MS medium modified by 2.5× KNO3 and ammonium elimination with 2.5 g l?1 peptone. Organic nitrogen source at 27.5-g l?1 impairs the growth rate of hairy roots. Its effect on saponin accumulation and secretion to the surrounding medium depended on line and media composition. Nitrate:ammonium ratio of 4:2 for CC16 resulted in 5.7-fold increment of saponin secretion comparing to the standard medium. Embryo roots, apical bud, and hypocotyls explants were crucial for induction of suspension culture synthesizing saponins; however, effect of mineral form of nitrogen in cultivating medium had to be considered. The highest OA glycosides level (171.97 μg g?1 of dry weight) was recorded in the root derived culture with nitrate as a sole mineral form of nitrogen. Peptone from lactalbumin decidedly inhibited the saponin formation; however, it was essential for culture initiation, proliferation, and organ differentiation.  相似文献   

17.
Picrorhiza kurroa Royle ex Benth. is an endangered plant producing various compounds of medicinal importance. Hairy roots of P. kurroa were obtained following cocultivation of shoot tip explants with Agrobacterium rhizogenes strains A 4 and PAT 405. Bacterial strain A 4 appeared to be better than the strain PAT 405 in terms of both growth of respective hairy root cultures and secondary metabolite production. The optimal growth of both the hairy root cultures occurred on half-strength semisolid medium with 3% sucrose. Picrotin and picrotoxinin from the roots of wild type field grown plants were compared with 8-week-old hairy root cultures induced by the A 4 and PAT 405 strains of A. rhizogenes. Picrotin and picrotoxinin content were evaluated in hairy root cultures as well as roots of field grown plant of P. kurroa. In terms of the production of picrotin and picrotoxinin, the A 4 induced hairy roots appeared to be a better performer than the PAT 405 induced hairy root cultures. The picrotin and picrotoxinin content was highest in 8-week-old A 4 induced hairy roots (8.8 μg/g DW and 47.1 μg/g DW, respectively). Rapid growth of the hairy roots of P. kurroa with in vitro secondary metabolite production potential may offer an attractive alternative to the exploitation of this endangered plant species.  相似文献   

18.
The organogenetic competence of roots and Agrobacterium rhizogenes-induced hairy roots of twelve Lycopersicon genotypes was investigated. Both roots and hairy roots of L. peruvianum, L. chilense, L. hirsutum and two L. peruvianum-derived genotypes regenerated shoots after 2–4 weeks of incubation on zeatin-contained medium. Anatomical analysis showed that shoot regeneration in roots could be direct or indirect, depending on the genotype considered. Hairy roots showed considerable differences in their morphogenetic responses, when compared to the corresponding non-transgenic roots. The differences observed may reflect the influence of the introduced rol genes on hormonal metabolism/sensitivity. Hairy root-derived T0 plants had shortened internodes, wrinkled leaves and abundant root initiation, and most produced flowers and fruits with viable seeds. The hairy root syndrome was detected early in germinating T1 seedlings as a strong reduction in the hypocotyl length. Our data point to the possibility of the use of A. rhizogenes, combined with regenerating Lycopersicon genotypes, in a very simple protocol, based on genetic capacity instead of special procedures for regeneration, to produce transgenic tomato plants expressing rol genes, as well as, genes present in binary vectors. Furthermore, the regeneration differences observed in each Lycopersicon genotype and in transgenic materials expressing rol genes open the possibility for their use in the analysis of both the biochemical and the genetic background of organogenetic competence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.  相似文献   

20.
Glycyrrhiza glabra is one of the most important and well-known medicinal plants which produces various triterpene saponins such as glycyrrhizin. Beta-amyrin 11-oxidase (CYP88D6) plays a key role in engineering pathway of glycyrrhizin production and converts an intermediated beta-amyrin compound to glycyrrhizin. In this study, pBI121GUS-9:CYP88D6 construct was transferred to G. glabra using Agrobacterium rhizogene ATCC 15834. The quantitation of transgene was measured in putative transgenic hairy roots using qRT-PCR. The amount of glycyrrhizin production was measured by HPLC in transgenic hairy root lines. Gene expression analysis demonstrated that CYP88D6 was over-expressed only in one of transgenic hairy root lines and was reduced in two others. Beta-amyrin 24-hydroxylase (CYP93E6) was significantly expressed in one of the control hairy root lines. The amount of glycyrrhizin metabolite in over-expressed line was more than or similar to that of control hairy root lines. According to the obtained results, it would be recommended that multi-genes of glycyrrhizin biosynthetic pathway be transferred simultaneously to the hairy root in order to increase glycyrrhizin content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号