首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有27条查询结果,搜索用时 390 毫秒
1.
Elms (Ulmus spp.) have long been appreciated for their environmental tolerance, landscape and ornamental value, and the quality of their wood. Although elm trees are extremely hardy against abiotic stresses such as wind and pollution, they are susceptible to attacks of biotic stressors. Over 100 phytopathogens and invertebrate pests are associated with elms: fungi, bacteria and insects like beetles and moths, and to a lesser extent aphids, mites, viruses and nematodes. While the biology of the pathogen and insect vector of the Dutch elm disease has been intensively studied, less attention has been paid so far to the defence mechanisms of elms to other biotic stressors. This review highlights knowledge of direct and indirect elm defences against biotic stressors focusing on morphological, chemical and gene regulation aspects. First, we report how morphological defence mechanisms via barrier formation and vessel occlusion prevent colonisation and spread of wood- and bark-inhabiting fungi and bacteria. Second, we outline how secondary metabolites such as terpenoids (volatile terpenoids, mansonones and triterpenoids) and phenolics (lignans, coumarins, flavonoids) in leaves and bark are involved in constitutive and induced chemical defence mechanisms of elms. Third, we address knowledge on how the molecular regulation of elm defence is orchestrated through the interaction of a huge variety of stress- and defence-related genes. We conclude by pointing to the gaps of knowledge on the chemical and molecular mechanisms of elm defence against pest insects and diseases. An in-depth understanding of defence mechanisms of elms will support the development of sustainable integrated management of pests and diseases attacking elms.  相似文献   
2.
In this paper we describe the production of transgenic broccoli and cauliflower with normal phenotype using an Agrobacterium rhizogenes-mediated transformation system with efficient selection for transgenic hairy-roots. Hypocotyls were inoculated with Agrobacterium strain A4T harbouring the bacterial plasmid pRiA4 and a binary vector pMaspro::GUS whose T-DNA region carried the gus reporter gene. pRiA4 transfers TL sequences carrying the rol genes that induce hairy root formation. Transgenic hairy-root production was increased in a difficult-to-transform cultivar by inclusion of 2,4-D in the medium used to resuspend the Agrobacterium prior to inoculation. Transgenic hairy roots could be selected from inoculated explants by screening root sections for GUS activity; this method eliminated the use of antibiotic resistance marker genes for selection. Transgenic hairy roots were produced from two cauliflower and four broccoli culivars. Shoots were regenerated from transgenic hairy root cultures of all four cultivars tested and successfully acclimatized to glasshouse conditions, although some plants had higher than diploid ploidy levels. Southern analysis confirmed the transgenic nature of these plants. T0 plants from seven transgenic lines were crossed or selfed to produce viable seed. Genetic analysis of T1 progeny confirmed the transmission of traits and revealed both independent and co-segregation of Ri TL-DNA and vector T-DNA. GUS-positive phenotypically normal progeny free of TL-DNA were identified in three transgenic lines out of the six tested representing all the cultivars regenerated including both cauliflower and broccoli.  相似文献   
3.
Parasitic insects use herbivore induced plant volatiles as signals for host location. However, their responses to these volatiles in the background of natural habitat odours need further evaluation for developing successful biological control strategies. Field elms (Ulmus minor Miller (Ulmaceae)) release a blend of volatiles in response to oviposition of the elm leaf beetle, Xanthogaleruca luteola Müller (Coleoptera: Chrysomelidae), a major urban and forest pest in the USA and Australia. This induced blend attracts the beneficial egg parasitoid Oomyzus gallerucae Fonscolombe (Hymenoptera: Eulophidae). Our olfactory assays showed that an odorous background of non-attractive host plant volatiles from feeding damaged elms or (Z)-3-hexenyl acetate masks the attractive effect of the host-induced (E)-β-caryophyllene to O. gallerucae. Quantitative GC–MS analyses revealed decreased concentrations of (Z)-3-hexenyl acetate accompanied by highly increased concentrations of sesquiterpenes in oviposition and feeding treated elms compared to undamaged elms. This finding hints to how the parasitoid might distinguish between different odorous backgrounds. It is corroborated by the outcome of our field study in natural elm stands, where the egg parasitoid parasitized more host egg masses due to an artificially induced blend of elm terpenoids.  相似文献   
4.
Adventitious roots of two to four-weekold intact plants of Zea mays L. (cv. LG11) were shorter but less dense after extending into stagnant, non-aerated nutrient solution than into solution continuously aerated with air. Dissolved oxygen in the non-aerated solutions decreased from 21 kPa to 3–9 kPa within 24 h. When oxygen partial pressures similar to those found in non-aerated solutions (3, 5 and 12 kPa) were applied for 7 d to root systems growing in vigorously bubbled solutions, the volume of gas-space in the cortex (aerenchyma) was increased several fold. This stimulation of aerenchyma was associated with faster ethylene production by 45-mm-long apical root segments. When ethylene production by roots exposed to 5 kPa oxygen was inhibited by aminoethoxyvinylglycine (AVG) dissolved in the nutrient solution, aerenchyma formation was also retarded. The effect of AVG was reversible by concomitant applications of 1-aminocyclopropane-1-carboxylic acid, an immediate precursor of ethylene. Addition of silver nitrate, an inhibitor of ethylene action, to the nutrient solution also prevented the development of aerenchyma in roots given 5 kPa oxygen. Treating roots with only 1 kPa oxygen stimulated ethylene production but failed to promote gas-space formation. These severely oxygen-deficient roots seemed insensitive to the ethylene produced since a supplement of exogeneous ethylene that promoted aerenchyma development in nutrient solution aerated with air (21 kPa oxygen) failed to do so in nutrient solution supplied with 1 kPa oxygen. Both ethylene production and aerenchyma formation were almost completely halted when roots were exposed to nutrient solutions devoid of oxygen. Thus both processes require oxygen and are stimulated by oxygen-deficient surroundings in the 3-to 12-kPa range of oxygen partial pressures when compared with rates observed in air (21 kPa oxygen).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine  相似文献   
5.
Brassica oleracea is a highly polymorphic species encompassing a wide range of important vegetable and fodder crops. Gene transfer into cultivated forms of this species requires reproducible and efficient methods for genetic transformation and plant regeneration. In this review, we have collated the research experience on transformation ofB. oleracea to highlight the problems encountered. Most research effort has been directed at developingAgrobacterium-mediated transformation methods with relatively little emphasis to date on direct gene transfer techniques. Common procedures for the transformation ofB. oleracea have not emerged, due to the inherent variability between and amongst genotypes. Future progress would be facilitated by the use of genetically fixed material, such as double-haploid or inbred lines, to reduce variation of response within genotypes and would avoid the need for cultivar-specific transformation protocols if responsive lines amenable to crossing with cultivated forms could be identified. The principal difficulties relate to combining efficient plant regeneration with gene transfer. Methods that enhance bacterial virulence and increase the proportion of cells susceptible to transformation and competent for regeneration are discussed. Inefficient selection is a major cause of poor transformation frequencies inB. oleracea and has resulted in the regeneration of chimeric plants uponAgrobacterium tumefaciens-mediated transformation. Promising results have been obtained withAgrobacterium rhizogenes-mediated transformation but the impact of therol genes on flowering of primary transformants has not yet been fully assessed. Strategies to reduce the deleterious effects of therol genes on flowering are discussed. Few agronomically useful characters have been introduced, the majority of research having been confined to the introduction of marker and reporter genes; possible candidate genes are discussed.  相似文献   
6.
Infection of Ulmus procera (English elm) cloneSR4 internodal stem explants with Agrobacteriumtumefaciens C58 c1 pRiA4b resulted in callusdevelopment and extensive hairy root production. Shoots which regenerated from hairy roots, followingan extended culture period, were dwarf in stature,with reduced apical dominance and wrinkled leaves whencompared with wild type U. procera SR4. Shootswere rooted successfully and plants with extensiveroot systems have been transferred to soil. Thetransgenic status of regenerants was confirmed by PCRanalysis and DNA sequencing of pRiA4b TL- and TR- DNArolA (329 bp) and agropine synthase (490 bp)primed amplimers, which were 100% homologous to theexpected sequences. No vir D1 primed PCRproducts were obtained, indicating that the Agrobacterium was successfully removed. Thepotential of Ri plasmid mediated transformation forinducing altered elm xylem structure, restrictedspread of the Dutch elm disease fungus and inphytoremediation is discussed.  相似文献   
7.
Previous studies have suggested that the caspase 8 inhibitor FLIP is a promising anti-cancer therapeutic target. In this study, we characterised a novel FLIP-targeted antisense phosphorothioate oligonucleotide (AS PTO). FLIP AS and control PTOs were assessed in vitro in transient transfection experiments and in vivo using xenograft models in Balb/c nude mice. FLIP expression was assessed by QPCR and Western. Apoptosis induction was determined by flow cytometry and Western. Of 5 sequences generated, one potently down-regulated FLIP. AS PTO-mediated down-regulation of FLIP resulted in caspase 8 activation and apoptosis induction in non-small cell lung (NSCLC) cells but not in normal lung cells. Similar results were observed in colorectal and prostate cancer cells. Furthermore, the FLIP AS PTO sensitized cancer cells but not normal lung cells to apoptosis induced by rTRAIL. Moreover, the FLIP AS PTO enhanced chemotherapy-induced apoptosis in NSCLC cells. Importantly, compared to a control non-targeted PTO, intra-peritoneal delivery of FLIP AS PTO inhibited the growth of NSCLC xenografts and enhanced the in vivo antitumour effects of cisplatin. We have identified a novel FLIP-targeted AS PTO that has in vitro and in vivo activity and which therefore has potential for further pre-clinical development.  相似文献   
8.
Wood is almost as important to humanity as food, and the natural forests from which most of it is harvested from are of enormous environmental value. However, these slow-growing forests are unable to meet current demand, resulting in the loss and degradation of forest. Plantation forests have the potential to supply the bulk of humanity's wood needs on a long-term basis, and so reduce to acceptable limits the harvest pressures on natural forests. However, if they are to be successful, plantation forests must have a far higher yield of timber than their natural counterparts, on much shorter rotation times. To achieve this in reasonable time, biotechnology must be applied to the tree-improvement process, for which large increases in public and private capital investment are needed. However, additional obstacles exist in the form of opposition to plantations, some forest ecocertification schemes, and concerns about aspects of forest biotechnology, especially genetic engineering. It is the intention of this article to explain, in detail, why plantation forests are needed to sustainably meet the world's demand for wood, why they are not being developed fast enough, and why the application of biotechnology to tree improvement is essential to speeding up this process.  相似文献   
9.
Hierarchically organized porous carbonized‐Co3O4 inverse opal nanostructures (C‐Co3O4 IO) are synthesized via complementary colloid and block copolymer self‐assembly, where the triblock copolymer Pluronic P123 acts as the template and the carbon source. These highly ordered porous inverse opal nanostructures with high surface area display synergistic properties of high energy density and promising bifunctional electrocatalytic activity toward both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It is found that the as‐made C‐Co3O4 IO/Ketjen Black (KB) composite exhibits remarkably enhanced electrochemical performance, such as increased specific capacity (increase from 3591 to 6959 mA h g?1), lower charge overpotential (by 284.4 mV), lower discharge overpotential (by 19.0 mV), and enhanced cyclability (about nine times higher than KB in charge cyclability) in Li–O2 battery. An overall agreement is found with both C‐Co3O4 IO/KB and Co3O4 IO/KB in ORR and OER half‐cell tests using a rotating disk electrode. This enhanced catalytic performance is attributed to the porous structure with highly dispersed carbon moiety intact with the host Co3O4 catalyst.  相似文献   
10.
Various nuclear proteins are the major targets of autoimmune responses in various rheumatic disorders. In particular, autoantibodies directed against a 68-kDa protein associated with the (U1) RNA-containing small nuclear ribonucleoprotein complexes typically occur in sera of patients with mixed connective tissue disease and related rheumatic disorders, such as systemic lupus erythematosus, and therefore are very useful as a serological marker. For establishing powerful immunoassays, it was necessary to generate recombinant human P68 antigen as the antigenic target. In this study we demonstrated that the cDNA coding for the full-length human P68 antigen could not be expressed by a traditional bacterial vector system due to a putative inhibitory sequence designated as inhibitory sequence X which is located between the autoreactive domains C′ and D′ of the human P68 antigen. The construction of corresponding hybrid plasmids carrying two functional and independent gene blocks indicated thetrans-active function of the inhibitory sequence X, which could be localized by expression studies of various deletion constructs. Comparable Northern blot analysis clearly demonstrated that the inhibitory sequence X could act on the translation of the P68 mRNA. After excision of the inhibitory sequence X a dramatic increase in the production of recombinant human P68 antigen was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号