首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288985篇
  免费   22647篇
  国内免费   6511篇
  2022年   1558篇
  2021年   5192篇
  2020年   3833篇
  2019年   4765篇
  2018年   11425篇
  2017年   10300篇
  2016年   9788篇
  2015年   7956篇
  2014年   9258篇
  2013年   10324篇
  2012年   14469篇
  2011年   18624篇
  2010年   12995篇
  2009年   12432篇
  2008年   13837篇
  2007年   14813篇
  2006年   6763篇
  2005年   6906篇
  2004年   5783篇
  2003年   5812篇
  2002年   5306篇
  2001年   12790篇
  2000年   12500篇
  1999年   9725篇
  1998年   2792篇
  1997年   2986篇
  1996年   2702篇
  1995年   2482篇
  1994年   2285篇
  1993年   2128篇
  1992年   6461篇
  1991年   6007篇
  1990年   5362篇
  1989年   5221篇
  1988年   4655篇
  1987年   4106篇
  1986年   3665篇
  1985年   3596篇
  1984年   2632篇
  1983年   2342篇
  1982年   1635篇
  1979年   2377篇
  1978年   1797篇
  1977年   1599篇
  1976年   1384篇
  1975年   1638篇
  1974年   1720篇
  1973年   1700篇
  1972年   2182篇
  1971年   2024篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle’s ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.  相似文献   
2.
In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6′-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria.  相似文献   
3.
4.
5.
6.
7.
This review summarizes published data on the genetic markers used in studies of dreissenide invasions. Causes of genetic differences between local populations are discussed. It is shown that information about the genetic diversity of populations obtained by marker polymorphism analysis should be compared to study invasion directions.  相似文献   
8.
9.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号