首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic transformation of buckwheat (Fagopyrum esculentum Moench.) and regeneration of transgenic plants were obtained by using Agrobacterium tumefaciens strains as vectors. Buckwheat cotyledons were excised from imbibed seeds, co-cultivated with A. tumefaciens and subjected to previously reported protocols for callus and shoot regeneration. The transformation with oncogenic strains was confirmed by opine and DNA analyses of tumour tissue extracts. Plants were regenerated on cotyledon fragments incubated with strain A281, harboring pGA472, which carries the neomycin phosphotransferase II gene for kanamycin resistance. The transformation of resistant shoot clones was confirmed by NPTII enzyme assay and DNA hybridization. A large number of transformed shoots were rooted and fertile plantlets were raised in the greenhouse. Transgenic plants comprised pin and thrum clones, which were allowed to cross-pollinate. In about 180 R2 seeds tested for kanamycin resistance, the ratio of resistant to sensitive seedlings was roughly 3:1.Abbreviations BAP 6-benzylaminopurine - 2,4-D dichloro-phenoxyacetic acid - 2iP 6-(, ,-dimethylallyl-amino)-purine - IBA indole-3-butyric acid - IAA indole-3-acetic acid - Km kanamycin - NPTII neomycin phosphotransferase II  相似文献   

2.
In this paper we describe the production of transgenic broccoli and cauliflower with normal phenotype using an Agrobacterium rhizogenes-mediated transformation system with efficient selection for transgenic hairy-roots. Hypocotyls were inoculated with Agrobacterium strain A4T harbouring the bacterial plasmid pRiA4 and a binary vector pMaspro::GUS whose T-DNA region carried the gus reporter gene. pRiA4 transfers TL sequences carrying the rol genes that induce hairy root formation. Transgenic hairy-root production was increased in a difficult-to-transform cultivar by inclusion of 2,4-D in the medium used to resuspend the Agrobacterium prior to inoculation. Transgenic hairy roots could be selected from inoculated explants by screening root sections for GUS activity; this method eliminated the use of antibiotic resistance marker genes for selection. Transgenic hairy roots were produced from two cauliflower and four broccoli culivars. Shoots were regenerated from transgenic hairy root cultures of all four cultivars tested and successfully acclimatized to glasshouse conditions, although some plants had higher than diploid ploidy levels. Southern analysis confirmed the transgenic nature of these plants. T0 plants from seven transgenic lines were crossed or selfed to produce viable seed. Genetic analysis of T1 progeny confirmed the transmission of traits and revealed both independent and co-segregation of Ri TL-DNA and vector T-DNA. GUS-positive phenotypically normal progeny free of TL-DNA were identified in three transgenic lines out of the six tested representing all the cultivars regenerated including both cauliflower and broccoli.  相似文献   

3.
Summary Transgenic shoots were regenerated from eight diploid potato hairy root clones obtained by transformation with Agrobacterium rhizogenes harboring next to its wild-type Ri-plasmid a binary vector containing the neomycin phosphotransferase and the -glucuronidase genes. The plants exhibited the typical hairy root phenotype. Of the plants isolated, 58% were tetraploid and 38% were diploid. Flowering and tuberization was much better in the diploid than in the tetraploid plants. Transgenic plants formed a significantly larger root system when grown on kanamycin-containing medium as compared to growth on kanamycin-free medium. Direct evidence for genetic transformation was obtained by opine, neomycin phosphotransferase and -glucuronidase assays, and by molecular hybridization. Fourteen flowering diploid plants were reciprocally crossed with untransformed S. tuberosum plants, but only six were successful. Seedlings obtained from four crosses showed that all traits were transmitted to the offspring. Molecular analysis confirmed the presence of multiple integrations (copies) of both vector T-DNA and Ri-T-DNA. The genetic data, furthermore, suggest that the traits derived from Ri-T-DNA and binary vector T-DNA are linked, as no recombination between the different traits was observed.  相似文献   

4.
Summary Agrobacterium transformation of stem internodes of four monohaploid (839-79, 849-7, 851-23, 855-1) and two diploid (M9 and HH260) potato genotypes using hairy root-inducing single (LBA 1020, LBA 9365, LBA 9402) and binary (LBA 1060KG) vectors is reported. Various media and successive culture steps were tested for plant regeneration from different transformed root clones. The fate of introduced genetic markers in root clones and regenerated plants (hairy root phenotype, hormone autotrophy, opine production, kanamycin resistance, -glucuronidase activity), the ploidy stability and protoplast yield were analysed. The transformation efficiency of stem internodes (hairy root production) and the regeneration capacity of the transformed root clones greatly differed within and between the various potato genotypes. The regenerated plants obtained after transformation with both types of vectors often showed the absence of one or more genetic markers. However, transformation with the binary Agrobacterium vector generally resulted in the stable presence of the opines in all transformed root clones and most regenerated plants. In HH260, transformation efficiency, plant regeneration of transformed root clones, protoplast yield and ploidy stability were the highest as compared to the other genotypes. The application of these transformed plants as marker lines in gene mapping and gene expression studies is indicated.  相似文献   

5.
Summary A procedure for the regeneration of fertile transgenic white mustard (Sinapis alba L.) is presented. The protocol is based on infection of stem explants of 7–9 day old plants with an Agrobacterium tumefaciens strain harboring a disarmed binary vector with chimeric genes encoding neomycin phosphotransferase and -glucuronidase. Shoots are regenerated from callus-forming explants within 3–4 weeks. Under selection, 10% of the explants with transgenic embryonic callus develop into fertile transgenic plants. Rooting shoots transferred to soil yield seeds within 14–16 weeks following transformation. Integration and expression of the T-DNA encoded marker genes was confirmed by histochemical glucuronidase assays and Southern-DNA hybridization using primary transformants and S1-progeny. The analysis showed stable integration and Mendelian inheritance of trans-genes in transformed Sinapis lines.Abbreviations BAP 6-benzylaminopurine - CaMV cauliflower mosaic virus - GUS -glucuronidase - IBA indole-3-butyric acid - IM infection medium - NAA 1-naphthalene acetic acid - neo gene encoding NPTII - NPTII neomycin phosphotransferase - RIM root-inducing medium - SEM shoot-elongation medium - SIM shoot-inducing medium - t-nos polyadenylation site of the nopaline synthase gene - uidA gene encoding GUS - WM wash medium - X-Gluc 5-bromo-4-chloro-3-indolyl -D-glucuronide  相似文献   

6.
Summary Cultivated tomato was genetically transformed using two procedures. In the first procedure, punctured cotyledons were infected with disarmed Agrobacterium tumefaciens strain LBA4404 or with A. rhizogenes strain A4, each containing the binary vector pARC8. The chimeric neomycin phosphotransferase (NPT II) gene on pARC8 conferred on transformed plant cells the ability to grow on medium containing kanamycin. Transformation reproducible yielded kanamycin-resistant transformants in different tomato genotypes. NPT II activity was detected in transformed calli and in transgenic plants. All of these plants were phenotypically normal, fertile and set seeds. Using the second procedure, inverted cotyledons, we recovered transformed tomato plants from A. rhizogenes-induced hairy roots. In this case, all of the transgenic plants exhibited phenotypes similar to hairy root-derived plants reported for other species. Southern blot analysis on these plants revealed that the plant DNA hybridized with both probes representing pARC8-T-DNA, and the T-DNAs of the A4 Ri-plasmid. However, southern analysis on those phenotypically normal transgenic plants from the first procedure revealed that only the pARC8-T-DNA was present in the plant genome, thus indicating that the pARC8-T-DNA integrated into the plant genome independently of the pRi A4-T-DNA. Genetic analysis of these phenotypically normal transgenic plants for the kanamycin-resistance trait showed Mendelian ratios, 31 and 11, for selfed (R1) and in crossed progeny, respectively.  相似文献   

7.
Summary Genetically transformed plants of Brassica napus L. (oilseed rape) were obtained from hypocotyl expiants using Agrobacterium tumefaciens vectors. Hypocotyl explants were inoculated with disarmed or oncogenic A. tumefaciens strains, EHA101 and A281, and then cultured on media containing kanamycin. The A. tumefaciens strains harbored a binary vector, which contained a neomycin phosphotransferase II (NPTII) gene driven by the 35S promoter of cauliflower mosaic virus and an engineered napin (seed storage protein) gene with its own promoter (300 nucleotides 5 to the start of translation). Transformation of B. napus plants was confirmed by detection of NPT II enzyme activity, Southern blot analysis and inheritance of the kanamycin-resistance trait (NPT II gene) in the progeny. Expression of the engineered napin gene in embryos but not in leaves of transgenic plants was observed by Northern analysis. These data demonstrate that morphologically normal, fertile transgenic B. napus plants can be obtained using Agrobacterium as a gene vector and that developmentally regulated expression of reintroduced genes can be achieved.  相似文献   

8.
Cotyledon explants of muskmelon (Cucumis melo L., cv. Amarillo Oro) seedlings were co-cultivated with disarmed Agrobacterium tumefaciens strain LBA4404 that contained the binary vector plasmid pBI121.1. The T-DNA region of this binary vector contains the Nopaline synthase/neomycin phosphotransferase II (NPTII) chimeric gene for kanamycin resistance and the Cauliflower Mosaic Virus 35S/-glucuronidase (GUS) chimeric gene. After infection, the cotyledon pieces were placed in induction medium containing 100 mg/l kanamycin. Putative transformed shoots were obtained, followed by the development of morphologically normal plantlets. The transgenic nature of regenerants was demonstrated by polymerase chain reaction, Southern blot analysis, plant growth on medium selective for the transgene (NPTII) and expression of the co-transformed GUS gene. Factors affecting the transformation procedure are discussed.Abbreviations CaMV Cauliflower Mosaic Virus - Cf Cefotaxime - GUS -glucuronidase - Km Kanamycin - MS Murashige and Skoog - NOS nopaline synthase - NPTII neomycin phosphotransferase II - PCR polymerase chain reaction  相似文献   

9.
Cruciferous hairy roots are often used for improving drought adaptability, peroxidase production, andin vitro subculturing ofPlasmodiophora brassicae. For metabolic engineering,Agrobacterium tumefaciens-mediated systems have previously been developed for hairy root production in other plant species. Here, we used therolABC gene binary construct inA. tumefaciens strain GV3101 to establish cultures of Chinese cabbage hairy roots. On both solid and liquid media, therolABC hairy root lines exhibited a wild-type hairy root syndrome in terms of their growth and morphology. This demonstrates that those three genes are sufficient to induce high-quality hairy roots in Chinese cabbage. Such a system could be useful for the stable production of secondary metabolites in that species.  相似文献   

10.
A system for the production of transgenic plants was developed for the Oriental hybrid lily, Lilium cv. Acapulco, by Agrobacterium-mediated genetic transformation. Filament-derived calli were co-cultivated with A. tumefaciens strain EHA101/pIG121Hm, which harbored a binary vector carrying the neomycin phosphotransferase II, hygromycin phosphotransferase, and intron-containing -glucuronidase genes in the T-DNA region. Six hygromycin-resistant (Hygr) culture lines were obtained from 200 calli by scratching them with sandpaper prior to inoculation and using NH4NO3-free medium for co-cultivation and a hygromycin-containing regeneration medium for selection. Hygr culture lines regenerated shoots, which developed into plantlets following transfer to a plant growth regulator-free medium. All of these plantlets were verified to be transgenic by GUS histochemical assay and inverse PCR analysis.Abbreviations AS Acetosyringone (3,5-dimethoxy-4-hydroxy-acetophenone) - BA Benzyladenine - CaMV Cauliflower mosaic virus - GUS -Glucuronidase - HPT Hygromycin phosphotransferase - Hygr Hygromycin-resistant - NOS Nopaline synthase - NPTII Neomycin phosphotransferase II - PGR Plant growth regulator - PIC Picloram (4-amino-3,5,6-trichloropicolinic acid)Communicated by H. Ebinuma  相似文献   

11.
In vitro grown shoot tissue of facultative apomictic lines of guayule (Parthenium argentatum Gray), a rubber producing desert shrub, were transformed by Agrobacterium-mediated DNA transfer and regenerated into complete plants. Guayule shoots of lines 11591, UC101 and UC104 were inoculated with A. tumefaciens strains LBA4404 or PC2760 harboring the binary vector pCGN1557. Axillary shoots were regenerated from transformed cells and rooted in vitro in the presence of kanamycin. Genetic transformation in all cases was verified by Southern blot analysis. Transgenic plants were grown to maturity in the greenhouse and, as predicted for apomictic species, all seed produced possessed kanamycin resistance. Because apomicts have limitations for gene transfer by normal sexual crosses, this method offers a new means of transferring genes into this species.Abbreviations BA benzyladenine - EDTA ethylene diamine tetraacetate - kanR kanamycin resistance - MS salts salts of Murashige and Skoog medium (1962) - NAA naphthalene acetic acid - NPT-II neomycin phosphotransferase - SDS sodium dodecyl sulfate  相似文献   

12.
Summary Using an Agrobacterium tumefaciens binary vector (pAL4404, pBI131), we have demonstrated the transfer of the -glucuronidase gene into the flax (Linum usitatissimum L.) cultivar Glenelg after selection for kanamycin resistance. The transformed lines were obtained by inoculation and subsequent regeneration of hypocotyl segments. The callus that formed on the cut surfaces of the hypocotyl segments was isolated three weeks after infection and was subsequently subcultured to yield shoots. This procedure generated a large number of transgenic shoots over a relatively short period of time. The transformation efficiencies obtained were the highest reported so far for this plant species.Abbreviations 2,4-D, 2,4 dichlorophenoxyacetic acid - GUS glucuronidase - MS Murasbige and Skoog (1962) medium - MU 4-methyl-umbelliferone - MUG 4-methylumbelliferyl-glucuronide - NPTII neomycin phosphotransferase II - PCR polymerase chain reaction  相似文献   

13.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

14.
Summary Transgenic cucumber plants (Cucumis sativus L., cv. Straight Eight) were regenerated from roots induced by inoculation of inverted hypocotyl sections with Agrobacterium rhizogenes containing the vector pARC8 in addition to the resident Ri-plasmid. The DNA transferred to the plant from the vector (T-DNA) included a gene which encoded the enzyme neomycin phosphotransferase II, and thus conferred on the plant cells resistance to kanamycin. The transgenic plants looked normal and were positive for the neomycin phosphotransferase II. Southern blot analysis of the transgenic plants revealed that all plants contained vector DNA, but only some of them contained DNA from the Ri plasmid.  相似文献   

15.
Summary Transgenic sweet orange (Citrus sinensis L. Osbeck) plants have been obtained by Agrobacterium tumefaciens-mediated gene transfer. An hypervirulent A. tumefaciens strain harboring a binary vector that contains the chimeric neomycin phosphotransferase II (NPT II) and ß-glucuronidase (GUS) genes was cocultivated with stem segments from in vivo grown seedlings. Shoots regenerated under kanamycin selection were harvested from the stem segments within 12 weeks. Shoot basal portions were assayed for GUS activity and the remaining portions were shoot tip grafted in vitro for production of plants. Integration of the GUS gene was confirmed by Southern analysis. This transformation procedure showed the highest transgenic plant production efficiency reported for Citrus.Abbreviations BA benzyladenine - CaMV cauliflowermosaic virus - GUS ß-glucuronidase - LB Luria Broth - MS Murashige and Skoog - NAA naphthalenacetic acid - NOS nopaline synthase - NPT II neomycin phosphotransferase II - PEG polyethylene glycol - RM rooting medium - SRM shoot regeneration medium  相似文献   

16.
Transgenic apple (Malus × domestica Borkh.) Florina plants were obtained by Agrobacterium-mediated transformation. The efficiency of gene transfer was 7.9%, calculated as a number of explants producing at least one transgenic shoot, after co-cultivation of leaf explants from in vitro-grown shoots in a thin layer of the A. tumefaciens C58C1 strain with the binary vector pCMB-B:GUS. Polymerase chain reaction revealed that all the clones contained the nptII and rolB genes, while four of them did not contain the gus gene. Southern blot analysis confirmed the integration of the nptII and rolB genes, with one to three copies per genome being present. All independent rolB-transgenic lines were able to produce roots in vitro on the hormone free medium, while the plants, transformed with the vector pIB16.1, or untransformed control plants did not root, and only half of shoots of MM106 rootstock rooted on this medium. The average root number in the rolB-transgenic clones ranged from 4 to 7.7. Pretreatment with indole-3-butyric acid caused root formation in all transgenic and control plants and significantly increased root number in the rolB-transgenic lines, compared to untransformed plants. RolB-transgenic plants, grown in vivo in greenhouse for 2 years, did not differ phenotypically from the wild type line with the exception of root parts. All rolB-transformed plants produced altered root systems containing more fine roots leading to significantly increased fresh root weight in five plant lines.  相似文献   

17.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   

18.
An improved protocol for shoot regeneration from hairy roots transformed by Agrobacterium rhizogenes of the legume species Astragalus sinicus (Chinese milk vetch) has been developed. The A. rhizogenes strain DC-AR2 harboring the binary vector pBI121 which carries the uidAgene encoding -glucuronidase activity and the kanamycin resistance gene nptII, was used to transform cut ends of plantlet hypocotyls. Transformed hairy roots were selected on medium containing 75 g ml–1 kanamycin, and transformation was monitored by detection of the opine mikimopine, histochemical -glucuronidase activity, the polymerase chain reaction, and Southern blot analysis. The cytokinins benzylaminopurine, kinetin, and thidiazuron suppressed the growth of 8-month and 3-year-old hairy roots, but were necessary for adventitious shoot formation that could occur with some lines. Putative somatic embryos developed from transformed roots on medium with 7.5-10.0 mg l–1 2,4-dichlorophenoxyacetic acid. Light did not affect shoot regeneration from transformed hairy roots. This transformation and shoot regeneration system should be useful for testing gene expression quickly and be amenable to studies of shoot morphogenesis and interactions with rol gene expression.  相似文献   

19.
A system was established for introducing cloned genes into white clover (Trifolium repens L.). A high regeneration white clover genotype was transformed with binary Agrobacterium vectors containing a chimaeric gene which confers kanamycin resistance. Transformed kanamycin resistant callus was obtained by culturing Agrobacterium inoculated stolon internode segments on selective medium. The kanamycin resistance phenotype was stable in cells and in regenerated shoots. Transformation was confirmed by the expression of an unselected gene, nopaline synthase in selected cells and transgenic shoots and by the detection of neomycin phosphotransferase II enzymatic activity in kanamycin resistant cells. Integration of vector DNA sequences into plant DNA was demonstrated by Southern blot hybridisation.  相似文献   

20.
A system for genetic transformation of Coffea canephora by co-cultivation with Agrobacterium rhizogenes harbouring a binary vector has been developed. The objective of the present study was the genetic transformation and direct regeneration of transformants through secondary embryos bypassing an intervening hairy root stage. Transformants were obtained with a transformation efficiency up to 3% depending on the medium adjuvant used. A. rhizogenes strain A4 harbouring plasmid pCAMBIA 1301 with an intron uidA reporter and hygromycin phosphotransferase (hptII) marker gene was used for sonication-assisted transformation of Coffea canephora. The use of hygromycin in the secondary embryo induction medium allowed the selection of transgenic secondary embryos having Ri T-DNA along with the T-DNA from the pCAMBIA 1301 binary vector. In addition transgenic secondary embryos devoid of Ri-T-DNA but with stable integration of the T-DNA from the binary vector were obtained. The putative transformants were positive for the expression of the uidA gene. PCR and Southern blot analysis confirmed the independent, transgenic nature of the analysed plants and indicated single and multiple locus integrations. The study clearly demonstrates that A. rhizogenes can be used for delivering transgenes into tree species like Coffea using binary vectors with Agrobacterium tumefaciens T-DNA borders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号