首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomic signature of human cancer cells   总被引:3,自引:0,他引:3  
We assessed proteomic profiles as biomarkers for monitoring cell phenotypes. Protein expression profiles were obtained by fluorescence two-dimensional difference gel electrophoresis (2-D-DIGE), in which quantitative ability is improved by labeling proteins with fluorescent dyes prior to electrophoresis. Integrated protein spot intensities were analyzed by a statistical approach. The proteomic data of two groups of cell lines: (1) adenocarcinoma (AC) cell lines derived from lung, pancreas and colon tissues and (2) lung cancer cell lines with different histological backgrounds, including AC, squamous cell carcinoma and small cell carcinoma, were assessed on the basis of prior biological information. Hierarchical clustering analysis and principal component analysis were used to divide the cell lines into subgroups on the basis of similarities between their protein expression profiles. The majority of cell lines were grouped according to their organ of origin or histological background. A machine-learning algorithm selected 32 protein spots that were responsible for the classification. The results indicate that proteomic data generated by 2-D-DIGE can provide a signature of essential cell phenotypes, suggesting that it might be possible to apply this technique to developing tumor markers that could identify the organ of origin of metastatic tumors and contribute to the differential diagnosis of lung cancer.  相似文献   

2.
A problem in proteomic analysis of lung cancer tissue is the presence of complex components of different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma, and adenocarcinoma). The efficient solubilization of protein components before two-dimensional electrophoresis (2-DE) is a very critical. Poor solubilization has been associated with a failure to detect proteins and diffuse, streaked and/or trailing protein spots. Here, we have optimized the solubilization of human lung cancer tissue to increase protein resolution. Isoelectric focusing (IEF) rehydration buffer containing a thiourea–urea mixture provided superior resolution, whereas a buffer without thiourea yielded consistently poor results. In addition, IEF rehydration buffers containing CHAPS and DTT gave superior resolution, whereas buffers containing Nonidet P-40 (NP-40) and/or Triton X-100 did not. A tributylphosphine-containing buffer gave consistently poor results. Using optimized conditions, we used 2-D gel analysis of human lung cancer tissue to identify 11 differentially-expressed protein spots by MALDI-mass spectrometry. This study provides a methodological tool to study the complex mammalian proteomes.  相似文献   

3.
To investigate the proteomic background of malignancies of the pleura, we examined and compared the proteomic profile of malignant pleural mesothelioma (MPM)(10 cases), lung adenocarcinoma (11 cases), squamous cell carcinoma of the lung (13 cases), pleomorphic carcinoma of the lung (3 cases) and synovial sarcoma (6 cases). Cellular proteins were extracted from specific populations of tumor cells recovered by laser microdissection. The extracted proteins were labeled with CyDye DIGE Fluor saturation dyes and subjected to two-dimensional difference gel electrophoresis (2D-DIGE) using a large format electrophoresis device. Among 3875 protein spots observed, the intensity of 332 was significantly different (Wilcoxon p value less than 0.05) and with more than two-fold inter-sample-group average difference between the different histology groups. Among these 332, 282 were annotated by LC-MS/MS and included known biomarker proteins for MPM, such as calretinin, as well as proteins previously uncharacterized in MPM. Tissue microarray immunohistochemistry revealed that the expression of cathepsin D was lower in MPM than in lung adenocarcinoma (15% vs. 44% of cases respectively in immunohistochemistry). In conclusion, we examined the protein expression profile of MPM and other lung malignancies, and identified cathepsin D to distinguish MPM from most popular lung cancer such as lung adenocarcinoma.  相似文献   

4.
The reproducibility of conventional two-dimensional (2D) gel electrophoresis can be improved using differential in-gel electrophoresis (DIGE), a new emerging technology for proteomic analysis. In DIGE, two pools of proteins are labeled with 1-(5-carboxypentyl)-1'-propylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5-carboxypentyl)-1'-methylindodi-carbocyanine halide (Cy5) N-hydroxysuccinimidyl ester fluorescent dyes, respectively. The labeled proteins are mixed and separated in the same 2D gel. 2D DIGE was applied to quantify the differences in protein expression between laser capture microdissection-procured esophageal carcinoma cells and normal epithelial cells and to define cancer-specific and normal-specific protein markers. Analysis of the 2D images from protein lysates of approximately 250,000 cancer cells and normal cells identified 1038 protein spots in cancer cell lysates and 1088 protein spots in normal cell lysates. Of the detected proteins, 58 spots were up-regulated by >3-fold and 107 were down-regulated by >3-fold in cancer cells. In addition to previously identified down-regulated protein annexin I, tumor rejection antigen (gp96) was found up-regulated in esophageal squamous cell cancer. Global quantification of protein expression between laser capture-microdissected patient-matched cancer cells and normal cells using 2D DIGE in combination with mass spectrometry is a powerful tool for the molecular characterization of cancer progression and identification of cancer-specific protein markers.  相似文献   

5.
为了更全面地了解nm23-H1在肺癌中发挥转移抑制的机理,用双向凝胶电泳技术比较人高转移大细胞肺癌细胞株(L9981)和转染nm23-H1基因的人大细胞肺癌细胞株(L9981-nm23-H1)间蛋白表达的差异.利用固相pH梯度双向凝胶电泳分离人高转移大细胞肺癌细胞株(L9981)和转染nm23-H1基因的人大细胞肺癌细胞株(L9981-nm23-H1)的总蛋白,用图像分析软件比较分析以识别细胞间的差异表达蛋白质.结果成功地获得了两株细胞蛋白组分辨率高、重复性好的双向凝胶电泳图谱.软件分析两种细胞的凝胶电泳图谱后发现,在相同分析条件下识别的蛋白质斑点数L9981为902±169个、L9981-nm23-H1为1160±212个.比较L9981和L9981-nm23-H1人大细胞肺癌细胞株的双向凝胶电泳蛋白质图谱后发现6个蛋白质点仅在L9981中有表达,17个蛋白质点仅在L9981-nm23-H1中有表达.此外,发现13个在两种细胞株中均存在,但表达量差异在2倍以上的蛋白质点(P<0.05).结果提示,nm23-H1基因转染引起人高转移大细胞肺癌细胞株蛋白质表达谱的变化,可能是其逆转肺癌侵袭转移的生物学基础.  相似文献   

6.
Clear cell adenocarcinoma (CCA) has a highly malignant potential in human epithelial ovarian cancer. The serum CA-125 is widely used as a marker for ovarian cancer, but the level is relatively low in CCA. Therefore, new sensitive biomarkers are required. In this report, we describe a promising proteomic analysis that is differentially expressed in CCA when compared to mucinous adenocarcinoma, using the ovarian cultured cell lines OVISE, OVTOKO, and MCAS. The disease-associated proteins were identified by 2-D differential gel electrophoresis (2-D DIGE) and MS. In this analysis, 18 up-regulated and 31 down-regulated spots were observed that had at least two-fold differences in the two CCA cell lines than in MCAS as control cells. Some of the proteins differentially expressed in CCA were previously observed as alternative expression levels in ovarian and/or other cancers in clinical samples. In a subsequent preliminary differential study using surgical specimens from patients with CCA, it was demonstrated that the identified proteins were expressed differentially in actual tissues, as well as in the CCA culture cells. The results from this investigation show the potentiality of a proteomic approach for identifying disease-associated proteins, which may eventually serve as diagnostic markers or therapeutic targets in CCA.  相似文献   

7.
Renal cell carcinoma (RCC), the most common neoplasm affecting the adult kidney, is characterised by heterogeneity of histological subtypes, drug resistance, and absence of molecular markers. Two-dimensional difference gel electrophoresis (2-D DIGE) technology in combination with mass spectrometry (MS) was applied to detect differentially expressed proteins in 20 pairs of RCC tissues and matched adjacent normal kidney cortex (ANK), in order to search for RCC markers. After gel analysis by DeCyder 6.5 and EDA software, differentially expressed protein spots were excised from Deep Purple stained preparative 2DE gel. A total of 100 proteins were identified by MS out of 2500 spots, 23 and 77 of these were, respectively, over- and down-expressed in RCC. The Principal Component Analysis applied to gels and protein spots exactly separated the two sample classes in two groups: RCC and ANK. Moreover, some spots, including ANXA2, PPIA, FABP7 and LEG1, resulted highly differential. The DIGE data were also confirmed by immunoblotting analysis for these proteins. In conclusion, we suggest that applying 2-D DIGE to RCC may provide the basis for a better molecular characterization and for the discovery of candidate biomarkers.  相似文献   

8.
Differential proteome profiles of human lung squamous carcinoma tissue compared to paired tumor-adjacent normal bronchial epithelial tissue were established and analyzed by means of immobilized pH gradient-based two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). The results showed that well-resolved, reproducible 2-DE patterns of human lung squamous carcinoma and adjacent normal bronchial epithelial tissues were obtained under the condition of 0.75-mg protein-load. The average deviation of spot position was 0.733+/-0.101 mm in IEF direction, and 0.925+/-0.207 mm in SDS-PAGE direction. For tumor tissue, a total of 1241+/-88 spots were detected, 987+/-65 spots were matched with an average matching rate of 79.5%. For control, a total of 1190+/-72 spots were detected, and 875+/-48 spots were matched with an average matching rate of 73.5%. A total of 864+/-34 spots were matched between tumors and controls. Forty-three differential proteins were characterized: some proteins were related to oncogenes, and others involved in the regulation of cell cycle and signal transduction. It is suggested that the differential proteomic approach is valuable for mass identification of differentially expressed proteins involved in lung carcinogenesis. These data will be used to establish human lung cancer proteome database to further study human lung squamous carcinoma.  相似文献   

9.
Recent advances in two-dimensional electrophoresis (2-DE) such as fluorescent 2-D differential gel electrophoresis (2-D DIGE) has made it possible to detect and quantitate the critical changes involved in disease pathogenesis. We have previously identified novel proteins with altered expression in primary colorectal cancer using agarose 2-DE that has a higher loading capacity than immobilized pH gradient gel. The aim of this study is to identify novel proteins with altered expression in primary esophageal cancer using the powerful method of agarose 2-DE and agarose 2-D DIGE. Excised tissues from 12 patients of primary esophageal cancer were obtained. Proteins with altered expression between cancer and adjacent non-cancer tissues were analyzed by agarose 2-D DIGE and identified by mass spectrometry. Thirty-three proteins out of 74 spots with altered expression in tumors were identified. Among them, a 195-kDa protein, periplakin, was significantly downregulated in esophageal cancer, which was confirmed by immunoblotting. Immunohistochemistry showed that periplakin was mainly localized at cell-cell boundaries in normal epithelium and dysplastic lesions, while it disappeared from cell boundaries, shifted to cytoplasm, in early cancers and scarcely expressed in advanced cancers. These results suggest that periplakin could be a useful marker for detection of early esophageal cancer and evaluation of tumor progression.  相似文献   

10.
CyDye DIGE Fluor saturation dye (saturation dye, GE Healthcare Amersham Biosciences) enables highly sensitive 2-D PAGE. As the dye reacts with all reduced cysteine thiols, 2-D PAGE can be performed with a lower amount of protein, compared with CyDye DIGE Fluor minimal dye (GE Healthcare Amersham Biosciences), the sensitivity of which is equivalent to that of silver staining. We constructed a 2-D map of the saturation dye-labeled proteins of a liver cancer cell line (HepG2) and identified by MS 92 proteins corresponding to 123 protein spots. Functional classification revealed that the identified proteins had chaperone, protein binding, nucleotide binding, metal ion binding, isomerase activity, and motor activity. The functional distribution and the cysteine contents of the proteins were similar to those in the most comprehensive 2-D database of hepatoma cells (Seow et al.., Electrophoresis 2000, 21, 1787-1813), where silver staining was used for protein visualization. Hierarchical clustering on the basis of the quantitative expression profiles of the 123 characterized spots labeled with two charge- and mass-matched saturation dyes (Cy3 and Cy5) discriminated between nine hepatocellular carcinoma cell lines and primary cultured hepatocytes from five individuals, suggesting the utility of saturation dye and our database for proteomic studies of liver cancer.  相似文献   

11.
Potential markers for progression of pulmonary squamous cell carcinoma (SCC) were identified by examining samples of lung SCC and adjacent normal tissues using a combination of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), and electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-TOF). The PANTHER System was used for gel image based quantification and statistical analysis. An analysis of proteomic data revealed that 323 protein spots showed significantly different levels of expression (P≤0.05) in lung SCC tissue compared to expression in normal lung tissue. A further analysis of these protein spots by MALDI-TOF-MS identified 81 different proteins. A systems biology approach was used to map these proteins to major pathways involved in numerous cellular processes, including localization, transport, cellular component organization, apoptosis, and reproduction. Additionally, the expression of several proteins in lung SCC and normal tissues was examined using immunohistochemistry and western blot. The functions of individual proteins are being further investigated and validated, and the results might provide new insights into the mechanism of lung SCC progression, potentially leading to the design of novel diagnostic and therapeutic strategies.  相似文献   

12.
To investigate aberrant plasma proteins in lung cancer, we compared the proteomic profiles of serum from five lung cancer patients and from four healthy volunteers. Immuno-affinity chromatography was used to deplete highly abundant plasma proteins, and the resulting plasma samples were separated into eight fractions by anion-exchange chromatography. Quantitative protein profiles of the fractionated samples were generated by two-dimensional difference gel electrophoresis, in which the experimental samples and the internal control samples were labeled with different dyes and co-separated by two-dimensional polyacrylamide gel electrophoresis. This approach succeeded in resolving 3890 protein spots. For 364 of the protein spots, the expression level in lung cancer was more than twofold different from that in the healthy volunteers. These differences were statistically significant (Student's t-test, p-value less than 0.05). Mass spectrometric protein identification revealed that the 364 protein spots corresponded to 58 gene products, including the classical plasma proteins and the tissue-leakage proteins catalase, clusterin, ficolin, gelsolin, lumican, tetranectin, triosephosphate isomerase and vitronectin. The combination of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis provides a valuable tool for serum proteomics in lung cancer.  相似文献   

13.
The molecular mechanisms underlying normal and pathological spermatogenesis remain poorly understood. We compared protein concentrations in different germ cell types to identify those proteins specifically or preferentially expressed at each stage of rat spermatogenesis. Crude cytosolic protein extracts and reversed-phase HPLC prefractionated cytosolic extracts from spermatogonia, pachytene spermatocytes, and early spermatids were subjected to two-dimensional difference gel electrophoresis (2-D DIGE). By comparing gels and carrying out statistical analyses, we were able to identify 1274 protein spots with relative abundances differing significantly between the three cell types. We found that 265 of these spots displaying highly differential expression (ratio > or = 2.5 between two cell types), identified by mass fingerprinting, corresponded to 123 nonredundant proteins. The proteins clustered into three clades, corresponding to mitotic, meiotic, and post-meiotic cell types. The differentially expressed proteins identified by 2-D DIGE were confirmed and validated by western blotting and immunohistochemistry, in the few cases in which antibodies were available. 2-D DIGE appears a relevant proteomics approach for studying rat germ cell differentiation, allowing the establishment of the precise expression profiles for a relatively large number of proteins during normal spermatogenesis.  相似文献   

14.
There is a growing interest in protein expression profiling aiming to identify novel diagnostic markers in breast cancer. Proteomic approaches such as two-dimensional differential gel electrophoresis coupled with tandem mass spectrometry analysis (2-D DIGE/MS/MS) have been used successfully for the identification of candidate biomarkers for screening, diagnosis, prognosis and monitoring of treatment response in various types of cancer. Identifying previously unknown proteins of potential clinical relevance will ultimately help in reaching effective ways to manage the disease. We analyzed breast cancer tissues from five tumor and five normal tissue samples from ten breast cancer subjects with infiltrating ductal carcinoma (IDC) by 2-D DIGE using two types of immobilized pH gradient (IPG) strips: pH 3-10 and pH 4-7. From all the spots detected, differentially expressed (p < 0.05 and ratio > 2) were 50 spots. Of these, 39 proteins were successfully identified by MS, representing 29 different proteins. Ten proteins were overexpressed in the tumor samples. The 2-D DIGE/MS/MS analysis revealed an increase in the expression levels in tumor samples of several proteins not previously associated with breast cancer, such as: macrophage-capping protein (CAPG), phosphomannomutase 2 (PMM2), ATPase ASN1, methylthioribose-1-phosphate isomerase (MRI1), peptidyl-prolyl cis-trans isomerase FKBP4, cellular retinoic acid-binding protein 2 (CRABP2), lamin B1 and keratin, type II cytoskeletal 8 (KRT8). Ingenuity Pathway Analysis (IPA) revealed highly significant (p = 10(-26)) interactions between the identified proteins and their association with cancer. These proteins are involved in many diverse pathways and have established roles in cellular metabolism. It remains the goal of future work to test the suitability of the identified proteins in samples of larger and independent patient groups.  相似文献   

15.
This paper explores the use of proteomics as a tool for identifying protein species whose expression has been altered by dibenzoylmethane (DBM) in LNCaP cells. Although DBM, a constituent of licorice, has been shown to induce cell cycle arrest and regulate androgen receptor (AR) expression, the mechanism by which these events occur is unknown. To develop a better understanding of the effect of DBM on cancer cells, we analyzed changes in protein expression induced by DBM in LNCaP cells using two-dimensional (2-D) gel electrophoresis. The proteomic approach used to study LNCaP cells has lead to the analysis and identification of a number of protein species that increase or decrease as a result of exposure to DBM. In particular, twenty features were found to be differentially expressed in this study based on the quantitation of two separate 2-D-fluorescence difference gel electrophoresis analyses. Thirteen of these features were identified through mass spectrometric analysis. The intensity of 10 out of the 13 spots identified increased 2- to 3-fold in response to 25 micro M and 50 micro M DBM and the remaining three spots decreased 2-fold in response to the same DBM treatment. This study investigates proteomic changes induced by treatment of cells with DBM in order to develop a model for the mechanism by which DBM induces cell cycle arrest and represses AR expression.  相似文献   

16.
We describe fluorescence-based 2-D gel electrophoresis methods for visualization of low abundant, cancer relevant tyrosine phosphorylated (pTyr) proteins. The methods investigated were fluorescent Western blotting and two-dimensional difference gel electrophoresis (2-D DIGE) for detection of non-enriched and immunoaffinity enriched pTyr protein patterns. The same anti-phosphotyrosine specific antibody, 4G10, was used for both approaches. The results from fluorescent Western blotting of total proteins and from enriched CyDye DIGE pre-labeled pTyr proteins showed similar down regulation of phosphorylation upon treating of cells from a cancer model system (K562 chronic myeloid leukemia cells) with imatinib. This treatment introduced a known perturbation of phosphorylation that enabled testing of these new approaches to analyze variations in tyrosine phosphorylation levels. Enrichment of pTyr proteins was found highly advantageous for the outcome. Out of a simplified 2-D DIGE experiment of immunoaffinity enriched control and treated pTyr proteins, differential analysis as well as protein identification by mass spectrometry (MS) was possible.  相似文献   

17.
Kondo T  Seike M  Mori Y  Fujii K  Yamada T  Hirohashi S 《Proteomics》2003,3(9):1758-1766
The combination of laser microdissection and two-dimensional gel electrophoresis (2-D PAGE) has been developed to perform proteomic analysis on specific populations of cells in cancer tissues. However, as conventional low sensitivity silver staining was used for spot detection, the microdissection required to obtain an adequate amount of protein for 2-D PAGE is laborious and only a restricted number of protein spots could be visualized. As a consequence, this technology was impractical for direct clinical applications and had a limited impact on cancer studies. To solve these problems, we developed an application in which fluorescent dyes label the proteins extracted from microdissected tissues prior to 2-D PAGE separation. In this application, a small amount of protein, less than 6.6 microg, was enough to generate a 2-D profile with approximately 1500 protein spots. This technique was applied to compare the proteome of normal intestinal epithelium with that of adenoma in Min mice. Thirty-seven protein spots reproducibly showed significant differences in intensities. Mass spectrometric analysis and Western blotting identified eight of them, including prohibitin, 14-3-3zeta, tropomyosin 3 and Hsp84. These results indicate that fluorescence labeling of proteins from microdissected tissues prior to 2-D PAGE is a powerful cancer proteomic study tool.  相似文献   

18.
Today biomarker discovery is one of the most active aspects of proteomic investigations. However, the wide dynamic range of plasma proteins makes the analysis very challenging because high abundance proteins tend to mask those of lower abundance. Using a large bead-based library of combinatorial peptide ligands (Equalizer beads or ProteoMiner), the dynamic range of the protein concentration is compressed, the high abundance proteins present in the sample are reduced and the low abundance proteins are enriched, while retaining representatives of all proteins within the sample. In the present study, the combination of beads with surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and two-dimensional differential gel electrophoresis (2-D DIGE) technology were evaluated considering efficiency, reproducibility, sensitivity, and compatibility. The bead technology is easily compatible with both SELDI-TOF-MS and 2-D DIGE and the samples can be analyzed directly without any processing of the sample. The use of the beads prior SELDI-TOF-MS and 2-D DIGE enabled detection of many new protein spots/peaks and increased resolution and improved intensity of low abundance proteins in a reproducible fashion compared with the depletion technique. Several proteins have been identified by the combination of beads, 2-D DIGE and MS for example different kinds of complement factors and cytoskeletal proteins. Our data suggest that integration of the bead technology with our current proteomic technologies will enhance the possibility to deliver new peptide/protein biomarker candidates in our projects.  相似文献   

19.
The complexity of human plasma presents a number of challenges to the efficient and reproducible proteomic analysis of differential expression in response to disease. Before individual variation and disease-specific protein biomarkers can be identified from human plasma, the experimental variability inherent in the protein separation and detection techniques must be quantified. We report on the variation found in two-dimensional difference gel electrophoresis (2-D DIGE) analysis of human plasma. Eight aliquots of a human plasma sample were subjected to top-6 highest abundant protein depletion and were subsequently analyzed in triplicate for a total of 24 DIGE samples on 12 gels. Spot-wise standard deviation estimates indicated that fold changes greater than 2 can be detected with a manageable number of replicates in simple ANOVA experiments with human plasma. Mixed-effects statistical modeling quantified the effect of the dyes, and segregated the spot-wise variance into components of sample preparation, gel-to-gel differences, and random error. The gel-to-gel component was found to be the largest source of variation, followed by the sample preparation step. An improved protocol for the depletion of the top-6 high-abundance proteins is suggested, which, along with the use of statistical modeling and future improvements in gel quality and image processing, can further reduce the variation and increase the efficiency of 2-D DIGE proteomic analysis of human plasma.  相似文献   

20.
摘要 目的:探讨肺鳞状细胞癌(鳞癌)和腺癌PD-L1蛋白及相关miRNA表达的差异。方法:2019年5月至2020年11月来我院就诊的非小细胞肺癌初治患者纳入本项研究;按照病理类型,将患者分为腺癌组和鳞癌组;H&E染色检测免疫细胞数量;免疫组化检测PD-L1、ki-67、PD-1、CTLA-4和LAG-3的表达;miRNA测序筛选鳞癌和腺癌间差异表达的miRNA。结果:H&E染色结果显示鳞癌组微环境中免疫细胞的数量为86.86±8.96个/高倍视野(HPF),腺癌组的数量为26.29±3.99个/HPF(t=6.173,P<0.001);肺鳞癌组微环境免疫细胞PD-1、CTLA-4和LAG-3阳性表达的比例分别为53.71±6.88%、35.29±3.25%和34.43±3.29%,腺癌组阳性表达的比例分别为22.29±3.80%、13.43±2.32%和24.00±1.98%(t=3.997,P=0.002;t=5.476,P<0.001;t=2.719,P=0.019);肺鳞癌组患者PD-L1蛋白阳性表达的比例为76.67%,腺癌组的比例为36.67%(P=0.001);肺鳞癌PD-L1(miR-135、miR-24和miR-30b等)和PD-1(miR-802、miR-155和miR-3127-5p等)相关miRNA的表达均显著高于腺癌。结论:肺鳞癌PD-L1蛋白及相关miRNA的表达、微环境免疫细胞PD-1、CTLA-4和LAG-3阳性比例均显著高于腺癌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号