首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
瘤胃微生物对纤维素降解机理   总被引:8,自引:0,他引:8  
城市有机垃圾中木质纤维素难以被降解的根本原因 ,在于其木质素的物理屏障作用及纤维素本身的结晶结构 ,瘤胃微生物能够高效降解木质纤维素 ,是因为瘤胃菌群中存在各种可以分别降解木素和结晶纤维素微生物 ,它们分泌的各种酶类是降解的关键所在。  相似文献   

2.
白蚁及其共生微生物协同降解植物细胞壁的机理一直被世界各国科学家所关注。培菌白蚁作为高等白蚁,相比低等食木白蚁具有更多样化的食性,其利用外共生系统“菌圃”,对多种植物材料进行处理。本文综述了菌圃微生物降解木质纤维素的研究进展,以期为深入研究菌圃中木质纤维素降解过程及其机制,并挖掘利用菌圃降解木质纤维素的能力及仿生模拟菌圃开发新的生物质利用系统提供参考。培 菌白蚁在其巢内利用由植物材料修建的多孔海绵状结构——“菌圃”来培养共生真菌鸡枞菌Termitomyces spp.,形成了独特的木质纤维素食物降解和消化策略,使木质纤维素在培菌白蚁及其共生微生物协同作用下被逐步降解。幼年工蚁取食菌圃上的共生真菌菌丝组成的小白球和老年工蚁觅得食物并排出粪便堆积到菌圃上成为上层菌圃。这一过程中,被幼年工蚁取食的共生真菌释放木质素降解酶对包裹在植物多糖外部的木质素屏障进行解聚。菌圃微生物(包括共生真菌)对解聚的木质素基团进一步降解,将多糖长链或主链剪切成短链,使菌圃基质自下而上被逐步降解。最后下层的老熟菌圃被老年工蚁取食,其中肠的内源酶系及后肠微生物将这些短链进一步剪切和利用。因此,蚁巢菌圃及其微生物是培菌白蚁高效转化利用木质纤维素的基础。化学层面的研究表明,菌圃能够实现对植物次生物质解毒和植 物纤维化学结构解构。对共生真菌相关酶系的研究显示可能其在菌圃的植物纤维化学结构和植物次生物质的降解中发挥了作用,但不同属共生真菌间其效率和具体功能不尽相同。而菌圃中的细菌是否发挥了作用和哪些细菌类群发挥了作用等仍有待进一步的研究。相比于低等食木白蚁利用其后肠共生微生物降解木质纤维素,培菌白蚁利用菌圃降解木质纤维素具有非厌氧和能处理多种类型食物两大优势,仿生模拟菌圃降解木质纤维素的机制对林地表面枯枝落叶的资源化利用具有重要意义。  相似文献   

3.
筛选微生物降解木质纤维素的研究进展   总被引:2,自引:0,他引:2  
木质纤维素资源是自然界中含量丰富的可再生资源,利用微生物降解木质纤维素是一种重要的策略。在综合国内外对木质纤维素降解微生物的筛选方法和研究策略的基础上,从单一菌株、复合微生物菌系和组学技术三个方面对筛选微生物降解木质纤维素进行了总结和分析,阐述了各个策略的优势特点和应用价值,即单一菌株易于培养但降解能力较低,复合菌系降解能力强但传代稳定性较差,组学技术能够更好的解释微生物降解木质纤维素的机理,为筛选木质纤维素降解微生物提供一定的指导。同时提出使用合成生物学的策略进行相应微生物的筛选,旨在为筛选高效降解木质纤维素的微生物提供一定的参考。  相似文献   

4.
蒋宇彤  张硕  林子佳  倪金凤 《微生物学报》2020,60(12):2635-2649
木质纤维素是地球上最丰富的有机聚合物,白蚁是古老但进化最成功的高效木质纤维素降解者之一。了解白蚁降解高度抗性植物聚合物的机制对工业上生物质能源转化和生物仿生设计有重要的借鉴和指导价值。白蚁和其共生微生物产生的木质纤维素酶在其转化利用木质纤维素上发挥着重要作用。本文从来源作用方面对白蚁自身及其肠道原虫、细菌和真菌产生的纤维素酶、木聚糖酶和漆酶等酶研究概况进行了总结,对其存在的问题和前景进行了展望。本综述有助于全面了解白蚁消化系统木质纤维素酶的基因种类、来源、分布、表达以及酶活性和功能。  相似文献   

5.
木质纤维生物质是地球上最丰富的可再生资源,可转化为能源、化学品和材料,开发木质纤维生物质有利于废弃物的高值化利用和缓解目前面临的环境污染等问题。木质纤维素主要包括纤维素、半纤维素和木质素,将其主要组分进行高效分离,是实现多元化、高值化生物精炼的基础。基于此,笔者简要总结了目前主要的木质纤维素资源化途径,如基于纤维素资源化、基于半纤维素资源化、基于木质素资源化、基于碳水化合物资源化以及全组分资源化的研究策略。依据半纤维素在植物细胞壁中承担的角色,结合前期的研究基础,提出半纤维素优先原位催化转化的木质纤维素生物炼制新策略,实现半纤维素的高选择性溶出和高效转化,保留结构完整的纤维素和木质素分级转化为小分子化学品和材料,最终实现资源生物量全利用,多元化产品联产的目的。  相似文献   

6.
解淀粉芽孢杆菌MN-8对玉米秸秆木质纤维素的降解   总被引:6,自引:0,他引:6  
微生物降解木质纤维素既是生物质资源化利用中的关键问题,也是亟需解决的难点问题.本文在前期获得木质素降解菌——解淀粉芽孢杆菌MN-8菌株的基础上,进一步研究该菌株对玉米秸秆木质纤维素的降解作用.研究利用玉米秸秆粉-MSM培养基对MN-8菌株进行固态发酵,监测发酵过程中木质纤维素酶活力和木质纤维素含量变化情况,并通过傅立叶红外光谱(FTIR)和气质联用色谱(GC/MS)对木质纤维素的降解情况及产物进行分析.结果表明:解淀粉芽孢杆菌MN-8菌株可产生木质素过氧化物酶、锰过氧化物酶、纤维素酶和半纤维素酶等木质纤维素降解酶,在发酵10~16 d陆续达到酶活力峰值,最高酶活力分别为55.0、16.7、45.4和60.5 U·g-1.发酵24 d后,玉米秸秆中木质素、纤维素和半纤维素的降解率可分别达到42.9%、40.6%和27.1%.FTIR光谱数据表明,玉米秸秆发酵后木质素、纤维素和半纤维素的特征吸收峰强度均有一定程度的下降,表明木质纤维素被部分降解.GC/MS分析结果也证实,解淀粉芽孢杆菌MN-8能有效降解秸秆木质纤维素.MN-8菌株可断裂玉米秸秆木质素单体之间的连接键β-O-4,将秸秆木质素解聚为苯丙胺、苯丙酮和苯丙酸等保留木质素苯丙烷结构的单体化合物,并将部分单体化合物进一步氧化为Cα羰基化合物,如2-氨基-1-苯丙酮和紫丁香基苯乙酮等.在对纤维素和半纤维素降解产物的GC/MS分析中发现,降解产物包含葡萄糖、甘露糖和半乳糖等多种单糖化合物以及甲酸、乙酸、丙酸、1,1-乙二醇和3-羟基丁酸等代谢产物.表明解淀粉芽孢杆菌MN-8对秸秆木质纤维素表现出强降解作用,且该作用依赖于菌株产木质纤维素降解酶的能力.  相似文献   

7.
木质纤维素预处理抑制物产生及脱除方法的研究进展   总被引:1,自引:0,他引:1  
利用纤维素酶将木质纤维素降解成可发酵性糖,然后发酵生产氢气、乙醇、丁醇等生物燃料及高附加值产品,是当今全球研究的热点。预处理是生物质转化过程中至关重要的步骤,而预处理过程中产生的抑制物对木质纤维素后续的酶解和发酵微生物有负面影响。因此了解预处理方法及其过程中产生的抑制物及脱除方法是能否高效转化生物质的基础。文中首先介绍了木质纤维素常用的两类预处理方法即化学法和物理化学法。随后阐述了不同抑制物的产生及其抑制机制,并重点介绍了多种脱毒方法。最后展望了脱除木质纤维素预处理抑制物的研究趋势:应用交联聚乙烯亚胺和金属有机骨架化合物等新型材料脱除抑制物或通过基因工程、代谢工程技术等构建抑制物耐受性菌株等。  相似文献   

8.
木质纤维素的微生物降解   总被引:1,自引:0,他引:1  
木质纤维素广泛存在于自然界中,因结构复杂,其高效降解需要多种微生物的协同互作,由于参与木质纤维素降解的微生物种类繁多,其协同降解机理尚不完全明确。随着微生物分子生物学和组学技术的快速发展,将为微生物协同降解木质纤维素机制的研究提供新的方法和思路。笔者前期研究发现,细菌复合菌系在50℃下表现出强大的木质纤维素降解能力,菌系由可分离培养和暂时不可分离培养细菌组成,但是可分离培养细菌没有降解能力。通过宏基因组和宏转录组研究表明,与木质纤维素降解相关的某些基因表达量发生显著变化,通过组学方法有可能更加深入解释微生物协同降解木质纤维素的微生物学和酶学机理。文中从酶、纯培养菌株和复合菌群三个方面综述了木质纤维素微生物降解研究进展,着重介绍了组学技术在解析复合菌群作用机理方面的现状和应用前景,以期为探索微生物群落协同降解木质纤维素的机理提供借鉴。  相似文献   

9.
孙建中  陈春润 《昆虫知识》2010,47(6):1033-1042
昆虫与生物质能源利用密切相关。这些昆虫包括白蚁类、甲虫类、树蜂类、食叶类水生昆虫、衣鱼类、大蚊类等。它们能在树木、枯枝以及落叶上生活,并具有了相当可观的降解和转化木质纤维素的能力,是自然界中协助进行碳循环的一类重要节肢动物。近几年来,这些昆虫独特的肠道消化能力以及它们的生物质催化转化系统已引起了科学家和研究人员的极大兴趣,希望能通过发现新的降解木质纤维素的酶及酶系统、掌握相关的这些酶的表达和其功能控制基因、并能解开昆虫肠道的消化及其相关机制的谜;更高效的降解和转化植物细胞壁中的碳水化合物并用来生产不同种类的生物能源或生物基材料。目前,对这类昆虫高效降解木质纤维素能力的认识和相关降解机制的研究已发展成为一个与生物质能源应用密切相关的新兴研究领域,成为新的交叉学科前沿。本文将简要讨论这类昆虫消化木质纤维素的几种不同作用机制、共生微生物与昆虫所产生的不同木质纤维素酶以及相互间的协同作用的基础上,还探讨了当前第二代生物质能源研究与开发中所面临的主要挑战、消化木质纤维素类昆虫,特别是白蚁所处的独特地位、潜在的科学和应用价值,以及今后的主要研究方向。  相似文献   

10.
木质素酶及其生产菌的筛选育种   总被引:3,自引:0,他引:3  
木质素酶降解木质纤维素材料中的木质素,使木质素-半纤维素-纤维素结构解体,纤维素得以暴露出来供后续步骤处理.它广泛应用于生物制浆、生物漂白、废水处理等工业过程中.由于近年利用可再生木质纤维素材料用酶法水解生产酒精成了研究热点,因而作为纤维素材料生物转化工艺预处理过程中的关键角色,木质素酶也极大地唤起人们的研究兴趣.本文介绍了木质素与白腐真菌(Phanerochaete chrysosporium)木质素降解酶系的特征以及锰过氧化物酶、木质素过氧化物酶、漆酶等3种木质素酶的催化作用机理,归纳了目前流行的木质素酶产生菌的筛选方法及近年来从自然界筛选木质素酶高产菌的种类,并对产木质素酶野生菌株的诱变育种与基因工程改造的进展进行了阐述.  相似文献   

11.
木质素高值转化对于提升生物炼制经济性,促进社会经济绿色发展具有重要意义。然而,木质素结构复杂且不均一,其高值化利用仍存在技术壁垒,使得木质素应用尚未形成规模。文中首先综述了当前生物炼制过程中木质素高值转化面临的主要挑战。然后通过比较不同预处理技术对木质素分离、性质及其利用的主要影响,详细阐述了基于生物炼制理念发展的新型组合预处理技术。其次,针对木质素本征结构特性导致其利用效率低等问题,进一步详述了溶剂分级、膜分级、梯度沉淀分级等分级利用策略对克服木质素不均一性,改善其可加工性能的重要影响。再次,针对木质素利用策略,系统比较了木质素热化学转化和生物转化,结合生物质预处理及木质素分级,阐述了以生物炼制理念进行木质素高值转化的新策略。最后,总结了木质素利用过程中存在的挑战性问题,展望了木质素高效分离、分级及转化过程发展的新策略和新趋势。  相似文献   

12.
《Trends in biotechnology》2022,40(12):1550-1566
Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a ‘biological funnel’ offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.  相似文献   

13.
《Trends in biotechnology》2022,40(12):1469-1487
Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.  相似文献   

14.
Lignin holds tremendous potential as a renewable feedstock for upgrading to a number of high-value chemicals and products that are derived from the petroleum industry at present. Since lignin makes up a significant fraction of lignocellulosic biomass, co-utilization of lignin in addition to cellulose and hemicelluloses is vital to the economic viability of cellulosic biorefineries. The recalcitrant nature of lignin, originated from the molecule's compositional and structural heterogeneity, however, poses great challenges toward effective and selective lignin depolymerization and valorization. Ionic liquid (IL) is a powerful solvent that has demonstrated high efficiency in fractionating lignocellulosic biomass into sugar streams and a lignin stream of reduced molecular weight. Compared to thermochemical methods, biological lignin deconstruction takes place at mild temperature and pressure while product selectivity can be potentially improved via the specificity of biocatalysts (lignin degrading enzymes, LDEs). This review focuses on a lignin valorization strategy by harnessing the biomass fractionating capabilities of ILs and the substrate and product selectivity of LDEs. Recent advances in elucidating enzyme-IL interactions as well as strategies for improving enzyme activity in IL are discussed, with specific emphases on biocompatible ILs, thermostable and IL-tolerant enzymes, enzyme immobilization, and surface charge engineering. Also reviewed is the protein engineering toolsets (directed evolution and rational design) to improve the biocatalysts' activity, stability and product selectivity in IL systems. The alliance between IL and LDEs offers a great opportunity for developing a biocatalytic route for lignin valorization.  相似文献   

15.
Journal of Industrial Microbiology & Biotechnology - The economic viability of the biorefinery concept is limited by the valorization of lignin. One possible method of lignin valorization is...  相似文献   

16.
Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances.  相似文献   

17.
As one of the most abundant polymers in biosphere, lignin has attracted extensive attention as a kind of promising feedstock for biofuel and bio-based products. However, the utilization of lignin presents various challenges in that its complex composition and structure and high resistance to degradation. Lignin conversion through biological platform harnesses the catalytic power of microorganisms to decompose complex lignin molecules and obtain value-added products through biosynthesis. Given the heterogeneity of lignin, various microbial metabolic pathways are involved in lignin bioconversion processes, which has been characterized in extensive research work. With different types of lignin substrates (e.g., model compounds, technical lignin, and lignocellulosic biomass), several bacterial and fungal species have been proved to own lignin-degrading abilities and accumulate microbial products (e.g., lipid and polyhydroxyalkanoates), while the lignin conversion efficiencies are still relatively low. Genetic and metabolic strategies have been developed to enhance lignin biodegradation by reprogramming microbial metabolism, and diverse products, such as vanillin and dicarboxylic acids were also produced from lignin. This article aims at presenting a comprehensive review on lignin bioconversion including lignin degradation mechanisms, metabolic pathways, and applications for the production of value-added bioproducts. Advanced techniques on genetic and metabolic engineering are also covered in the recent development of biological platforms for lignin utilization. To conclude this article, the existing challenges for efficient lignin bioprocessing are analyzed and possible directions for future work are proposed.  相似文献   

18.
Lignin, an abundant renewable resource in nature, is a highly heterogeneous biopolymer consisting of phenylpropanoid units. It is essential for sustainable utilization of biomass to convert lignin to value‐added products. However, there are technical obstacles for lignin valorization due to intrinsic heterogeneity. The emerging of synthetic biology technologies brings new opportunities for lignin breakdown and utilization. In this review, we discussed the applications of synthetic biology on lignin conversion, especially the production of value‐added products, such as aromatic chemicals, ring‐cleaved chemicals from lignin‐derived aromatics and bio‐active substances. Synthetic biology will offer new potential strategies for lignin valorization by optimizing lignin degradation enzymes, building novel artificial converting pathways, and improving the chassis of model microorganisms.  相似文献   

19.
20.
Lignin depolymerization generates a mixture of numerous compounds that are difficult to separate cost-effectively. To address this heterogeneity issue, microbes have been employed to ‘biologically funnel’ a broad range of compounds present in depolymerized lignin into common central metabolites that can be converted into a single desirable product. Because the composition of depolymerized lignin varies significantly with the type of biomass and the depolymerization method, microbes should be selected and engineered by considering this compositional variation. An ideal microbe must efficiently metabolize all relevant lignin-derived compounds regardless of the compositional variation of feedstocks, but discovering or developing such a perfect microbe is very challenging. Instead, developing multiple tailored microbes to tolerate a given mixture of lignin-derived compounds and to convert most of these into a target product is more practical. This review summarizes recent progress toward the development of such microbes for lignin valorization and offers future directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号