首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
木质纤维素的微生物降解   总被引:1,自引:0,他引:1  
木质纤维素广泛存在于自然界中,因结构复杂,其高效降解需要多种微生物的协同互作,由于参与木质纤维素降解的微生物种类繁多,其协同降解机理尚不完全明确。随着微生物分子生物学和组学技术的快速发展,将为微生物协同降解木质纤维素机制的研究提供新的方法和思路。笔者前期研究发现,细菌复合菌系在50℃下表现出强大的木质纤维素降解能力,菌系由可分离培养和暂时不可分离培养细菌组成,但是可分离培养细菌没有降解能力。通过宏基因组和宏转录组研究表明,与木质纤维素降解相关的某些基因表达量发生显著变化,通过组学方法有可能更加深入解释微生物协同降解木质纤维素的微生物学和酶学机理。文中从酶、纯培养菌株和复合菌群三个方面综述了木质纤维素微生物降解研究进展,着重介绍了组学技术在解析复合菌群作用机理方面的现状和应用前景,以期为探索微生物群落协同降解木质纤维素的机理提供借鉴。  相似文献   

2.
目的针对大庆地区土地盐碱化较严重,盐碱面积较大等现状,从大庆特征性盐碱地区土壤样品中分离出能够降解纤维素的菌株,为降解植物废料以及缓解土壤盐碱化改善土壤环境提供功能菌株。方法通过刚果红染色法初步筛得到具有纤维素降解能力菌株,进一步用比色法测定其纤维素降解率,同时测定菌株耐盐、耐碱、产酸性能,选择性能优良的3株菌作为纤维素降解菌复合菌系构建菌株,通过耐盐性、耐碱性和纤维素降解率实验测定复合菌系菌株最佳组合,进一步通过上述实验确定复合菌系菌株最佳混合比例。结果得到由DX-5和DX-9按照2∶3进行组合复合菌系纤维素降解率最高,达到87.96%,且具有较高的耐盐以及耐碱能力。结论通过实验得到纤维素降解菌的复合菌系,具有较高纤维素降解率以及改善土壤盐碱性能力。  相似文献   

3.
我国东北地区冬季寒冷,秸秆产量巨大,但综合利用率较低,利用高酶活性微生物将低温环境中的秸秆降解变废为宝,是一项循环利用的有效途径。研究表明,通过生物学技术手段,筛选高酶活性菌株,深入研究降解机理,优化功能微生物培养条件,提高纤维素酶活性,是提高降解率,秸秆资源化利用的最佳途径。复合微生物菌剂产生的酶活值普遍高于单一微生物菌,真菌菌丝体产生的酶活值高于细菌。实际应用中,选择适合的复合菌剂是低温环境下提高秸秆降解效率的有效途径。系统地归纳了低温条件下降解秸秆的微生物技术、分析了不同条件下降解秸秆的菌株类型和促进秸秆纤维素降解菌酶活力特征、并总结了低温环境下生物菌剂降解秸秆的技术应用效果,旨为低温环境下秸秆的资源化利用提供一定的技术参考。  相似文献   

4.
中温(37℃)纤维素分解菌的筛选及混合培养研究   总被引:3,自引:0,他引:3  
目的:筛选纤维素分解菌,构建复合微生物菌系进行混合培养,获得降解纤维素能力强的复合菌系.方法:从高温阶段堆肥样品、腐熟肥料、牛粪和土壤中筛选出能较好降解纤维素的菌株,进行单独与混合发酵培养,测其酶活.结果:获得降解纤维素能力较强的细菌3株、霉菌4株、放线菌2株.按不同的接种比例构建了4组复合微生物菌系,4个组合的滤纸失重率分别达到41.52%、44.94%、41.82%、37.11%,液体发酵的平均CMC酶活分别为624U/g、988U/g、769U/g、1041U/g,固体发酵的平均CMC酶活分别为4240U/g、5289U/g、4807U/g、5344U/g.结论:综合分析复合菌系滤纸条降解能力、CMC酶活、FAP酶活表明,组合二分解纤维素能力明显强于其他几个组合.  相似文献   

5.
白蚁及其共生微生物协同降解植物细胞壁的机理一直被世界各国科学家所关注。培菌白蚁作为高等白蚁,相比低等食木白蚁具有更多样化的食性,其利用外共生系统“菌圃”,对多种植物材料进行处理。本文综述了菌圃微生物降解木质纤维素的研究进展,以期为深入研究菌圃中木质纤维素降解过程及其机制,并挖掘利用菌圃降解木质纤维素的能力及仿生模拟菌圃开发新的生物质利用系统提供参考。培 菌白蚁在其巢内利用由植物材料修建的多孔海绵状结构——“菌圃”来培养共生真菌鸡枞菌Termitomyces spp.,形成了独特的木质纤维素食物降解和消化策略,使木质纤维素在培菌白蚁及其共生微生物协同作用下被逐步降解。幼年工蚁取食菌圃上的共生真菌菌丝组成的小白球和老年工蚁觅得食物并排出粪便堆积到菌圃上成为上层菌圃。这一过程中,被幼年工蚁取食的共生真菌释放木质素降解酶对包裹在植物多糖外部的木质素屏障进行解聚。菌圃微生物(包括共生真菌)对解聚的木质素基团进一步降解,将多糖长链或主链剪切成短链,使菌圃基质自下而上被逐步降解。最后下层的老熟菌圃被老年工蚁取食,其中肠的内源酶系及后肠微生物将这些短链进一步剪切和利用。因此,蚁巢菌圃及其微生物是培菌白蚁高效转化利用木质纤维素的基础。化学层面的研究表明,菌圃能够实现对植物次生物质解毒和植 物纤维化学结构解构。对共生真菌相关酶系的研究显示可能其在菌圃的植物纤维化学结构和植物次生物质的降解中发挥了作用,但不同属共生真菌间其效率和具体功能不尽相同。而菌圃中的细菌是否发挥了作用和哪些细菌类群发挥了作用等仍有待进一步的研究。相比于低等食木白蚁利用其后肠共生微生物降解木质纤维素,培菌白蚁利用菌圃降解木质纤维素具有非厌氧和能处理多种类型食物两大优势,仿生模拟菌圃降解木质纤维素的机制对林地表面枯枝落叶的资源化利用具有重要意义。  相似文献   

6.
油菜秸秆混合发酵降解菌的筛选   总被引:3,自引:0,他引:3  
油菜秸秆含有大量木质纤维素,该类物质结构稳定,不易降解,限制了其工业化应用.通过对10株包括细菌、酵母菌和白腐真菌的菌株产酶能力和特性进行比较,并进行共同培养试验,筛选出5株可共同生长的木质纤维素降解菌BS09、BL、PC、TS和KS.通过对这5个菌株单独发酵降解油菜秸秆的能力考察,结果表明:PC对木质纤维素的降解能力...  相似文献   

7.
厌氧真菌是自然界中降解植物纤维素类物质最高效的微生物之一。近年来,大量厌氧真菌和甲烷菌共培养菌株被分离。共培养中,甲烷菌通过对厌氧真菌代谢产物的利用显著提高厌氧真菌对木质纤维素的降解;厌氧真菌通过为甲烷菌提供能量和营养物质使甲烷菌快速生成大量甲烷。全面深入地了解共培养中两者的互作关系以及共培养降解木质纤维素产甲烷的特性,将有助于研究对木质纤维素降解以及甲烷生成的调控。因此,本文主要综述了共培养的分离鉴定、多样性、互作关系以及对木质纤维素的降解。  相似文献   

8.
木质纤维素复杂的结构组成,是制约高效降解利用这一资源、发展生物炼制的瓶颈。微生物的多酶(菌)体系可有效降解木质纤维素。除好氧微生物的游离酶协同系统之外,主要存在于厌氧细菌中的纤维小体也是有序、高效的协同降解纤维素的复合体系。近年来,在天然纤维小体研究的基础上,研究者们成功设计、构建了人工纤维小体,加深了对这一复合体系的组成单元的理性认识。另外,菌群共培养技术利用各组成菌株代谢途径的协同作用实现了木质纤维素的高效降解。最后,引入异源纤维素酶,可改造现有工程菌株的代谢网络,提高工程菌发酵生产终产物的能力。这些技术有利于实现一步转化生产乙醇的联合生物工艺,有助于提高生物炼制的产率、降低生产成本。  相似文献   

9.
一体化生物加工过程 (Consolidated bioprocessing,CBP) 是在一个生物反应器中完成水解酶生产、酶解、微生物发酵等多步生物过程的工艺。因其过程步骤简单、成本低,被认为是生产二代生物燃料最具发展前景的工艺。然而,由于木质纤维素降解与丁醇合成路径的复杂性,鲜有天然微生物可以直接利用木质纤维素合成丁醇。随着合成生物学技术的发展,在纤维素降解梭菌中引入丁醇合成途径,可以使单菌利用木质纤维素直接合成丁醇。但是该策略存在菌株代谢负荷重、丁醇产量低等问题。而混菌策略可以通过不同菌株的劳动分工,使单菌代谢负担得到缓解,因此进一步提高了丁醇合成效率。文中从单菌策略和混菌策略分析了近年来一体化生物加工过程利用木质纤维素合成丁醇的相关研究进展,为生物丁醇以及其他生物燃料的一体化生物加工过程研究提供借鉴。  相似文献   

10.
王春芳  马诗淳  黄艳  刘来雁  凡慧  邓宇 《微生物学报》2016,56(12):1856-1868
【目的】比较和分析从堆肥中富集的水稻秸秆降解菌系F1和F2的纤维素分解能力、微生物群落结构及其在秸秆降解过程中的演替,从而探究微生物群落结构与秸秆降解效率的相关性。【方法】采用DNS(3,5-二硝基水杨酸,3,5-dinitrosalicylic acid)定糖法测定发酵液中的外切纤维素酶活;采用范氏(Van Soest)洗涤纤维分析法测定发酵前与发酵后的秸秆纤维素、半纤维素、木质素的含量,并计算降解率;采用16S r RNA基因序列分析和实时荧光定量PCR(Quantitative real-time PCR,Q-PCR)对秸秆降解过程中的微生物物种组成及特定的功能微生物进行定性和定量分析。【结果】复合菌系F1的水稻秸秆总降解率、纤维素降解率、半纤维素降解率显著高于复合菌系F2;2种复合菌系的外切纤维素酶活性与cel48基因的拷贝数变化趋势一致;复合菌系F1的物种较丰富,优势物种是好氧细菌,复合菌系F2的物种组成较单一,培养后期具有较高比例的厌氧纤维素分解菌;培养前4天,复合菌系F1和F2的优势物种均为Unclassified Bacillales和Bacillus;第4天之后,不同复合菌系的优势物种及丰度出现差异,F1的优势物种主要属于Bacteroidetes,F2的优势物种主要属于Firmicutes;虽然Petrimonas和Pusillimonas是培养后期的共有优势物种,但是Petrimonas在复合菌系F2中的相对丰度(38.30%)显著高于F1(9.47%),且培养第8天的F2中的Clostridiales OPB54增加至14.85%。【结论】cel48基因拷贝数变化与秸秆纤维素的降解效率、外切纤维素酶活性变化具有一定的相关性,cel48基因可作为潜在的生物分子标记监测秸秆纤维素的降解过程;微生物群落结构对秸秆纤维素的降解效率具有显著影响,Unclassified Bacillales,Bacillus,Petrimonas,Pusillimonas是复合菌系F1和F2降解秸秆纤维素过程中的重要物种。  相似文献   

11.
Cover Image     
Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose.  相似文献   

12.
The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.  相似文献   

13.
14.
微生物油脂是未来燃料和食品用油的重要潜在资源。近年来,随着系统生物学技术的快速发展,从全局角度理解产油微生物生理代谢及脂质积累的特征成为研究热点。组学技术作为系统生物学研究的重要工具被广泛用于揭示产油微生物脂质高效生产的机制研究中,这为产油微生物理性遗传改造和发酵过程控制提供了基础。文中对组学技术在产油微生物中的应用概况进行了综述,介绍了产油微生物组学分析常用的样品前处理及数据分析方法,综述了包括基因组、转录组、蛋白(修饰)组及代谢(脂质)组等在内的多种组学技术,以及组学数据基础上的数学模型在揭示产油微生物脂质高效生产机制中的研究,并对未来发展和应用进行了展望。  相似文献   

15.
开发利用木质纤维素材料能显著增加地球上可再生资源的储备量。白蚁分布广泛,常见于热带和亚热带地区,它们借助细菌、古细菌、真菌等肠道微生物和原生动物协同降解食物中的木质纤维素,在生态系统的碳、氮循环中发挥着十分重要的作用。本文概括了近年来白蚁肠道微生物研究的进展,特别是近年来已被证明的肠道微生物在木质纤维素降解方面的作用,以期为后续研究木质纤维素的降解提供参考信息。  相似文献   

16.
Interest in developing a sustainable technology for fuels and chemicals has unleashed tremendous creativity in metabolic engineering for strain development over the last few years. This is driven by the exceptionally recalcitrant substrate, lignocellulose, and the necessity to keep the costs down for commodity products. Traditional methods of gene expression and evolutionary engineering are more effectively used with the help of synthetic biology and -omics techniques. Compared to the last biomass research peak during the 1980s oil crisis, a more diverse range of microorganisms are being engineered for a greater variety of products, reflecting the broad applicability and effectiveness of today’s gene technology. We review here several prominent and successful metabolic engineering strategies with emphasis on the following four areas: xylose catabolism, inhibitor tolerance, synthetic microbial consortium, and cellulosic oligomer assimilation.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号