首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   5篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2015年   1篇
排序方式: 共有6条查询结果,搜索用时 9 毫秒
1
1.
【背景】城市湿地和天然湿地受到人为扰动影响的程度显著不同。【目的】研究2种不同类型湿地底泥微生物多样性及种类的差异。【方法】采集冬夏两季城市湿地(龙凤湿地)和天然湿地(珰奈湿地)的底泥样品,使用16S rRNA基因测序技术测定底泥中细菌和古菌群落结构,分析2种湿地底泥的细菌、古菌差异及环境因素与微生物的相关性。【结果】龙凤湿地底泥中的硫杆菌属(Thiobacillus)、芽孢杆菌属(Bacillus)和鞘氨醇单胞菌属(Sphingomonas)丰度显著高于珰奈湿地(P<0.05);Methanoregula在珰奈湿地底泥中的丰度高于龙凤湿地;冬季厌氧绳菌属(Anaerolinea)和甲烷八叠球菌属(Methanosarcina)在珰奈湿地底泥中的丰度显著高于龙凤湿地(P<0.05)。【结论】龙凤湿地与珰奈湿地的差异主要影响湿地底泥中参与元素循环的细菌和产甲烷古菌的丰度,人为干扰和低温会降低湿地中微生物的多样性,pH、盐分和碱性磷酸酶是显著影响微生物多样性的环境因素。  相似文献   
2.
炎症反应过程中有效控制巨噬细胞一氧化氮(niric oxide,NO)的过度分泌和细胞内活性氧(reactive oxygen species,ROS)水平,对抑制LPS诱导的巨噬细胞过度活化和巨噬细胞介导的急性炎症反应具有重要的临床意义。该研究检测了以5,8-二甲氧基-1,4-萘醌(5,8-dimethoxy-1,4-naphthoquinone,DMNQ)为中间体,通过有机合成反应获得的6种新萘醌类衍生物对LPS诱导的RAW264.7细胞NO分泌和细胞内ROS水平的抑制效果及其机理。结果显示,在6种新合成的化合物中,2-环戊氨基-5,8-二甲氧基-1,4-萘醌具有明显抑制RAW264.7细胞NO分泌和细胞内ROS水平的效果,同时不影响细胞的吞噬能力。另外,通过对细胞信号传导通路的分析发现,#6化合物能够有效地抑制ROS依赖性的ERK和JNK磷酸化水平,最终发挥降低LPS诱导的RAW264.7细胞NO分泌和i NOS蛋白质表达的作用。  相似文献   
3.
木质纤维素在自然界中的储量可观,是生物燃料生产的重要来源。联合生物加工(consolidated bioprocessing)指在不添加酶的情况下,将木质纤维素“一步”转化为生物燃料的过程,在能源危机日益严重的今天具有重要的应用价值。合成微生物群落(synthetic microbial consortia)是由两种或多种纯培养微生物(野生菌株或工程菌株)共同培养而形成的菌群,具有复杂性低、稳定性高等优点,通过协调微生物之间的相互作用以及整个生态系统的稳定,从而实现特定的功能。近年来,合成生物学的快速发展有利于开发新的方法和工具用于合成微生物群落的构建及优化,促进其在联合生物加工方面的应用。本文聚焦于木质纤维素的联合生物加工,综述了合成微生物群落在该领域的研究进展。简单介绍了系统生物学为合成微生物群落的设计提供指导,详细介绍了合成微生物群落的设计原则、优化工具和在实际生产中的应用与挑战,为木质纤维素的联合生物加工提供借鉴意义。  相似文献   
4.
木质纤维素的微生物降解   总被引:1,自引:0,他引:1  
木质纤维素广泛存在于自然界中,因结构复杂,其高效降解需要多种微生物的协同互作,由于参与木质纤维素降解的微生物种类繁多,其协同降解机理尚不完全明确。随着微生物分子生物学和组学技术的快速发展,将为微生物协同降解木质纤维素机制的研究提供新的方法和思路。笔者前期研究发现,细菌复合菌系在50℃下表现出强大的木质纤维素降解能力,菌系由可分离培养和暂时不可分离培养细菌组成,但是可分离培养细菌没有降解能力。通过宏基因组和宏转录组研究表明,与木质纤维素降解相关的某些基因表达量发生显著变化,通过组学方法有可能更加深入解释微生物协同降解木质纤维素的微生物学和酶学机理。文中从酶、纯培养菌株和复合菌群三个方面综述了木质纤维素微生物降解研究进展,着重介绍了组学技术在解析复合菌群作用机理方面的现状和应用前景,以期为探索微生物群落协同降解木质纤维素的机理提供借鉴。  相似文献   
5.
【背景】高尿酸症由血液中尿酸含量明显升高而导致,利用乳酸菌对人体的益生作用缓解高尿酸血症越来越受到关注。【目的】获得具有降解尿酸能力的乳酸菌复合菌系与纯培养菌株。【方法】以泡菜为样品来源,以尿酸为底物,采用MRS培养基筛选降解尿酸的乳酸菌复合菌系,通过高效液相色谱法测定复合菌系对尿酸的降解能力。【结果】得到一组乳酸菌复合菌系,当培养温度为37 °C、pH值为6.20、静置培养72 h后复合菌系对尿酸的降解率为12.08%;通过优化培养条件,当该菌系在以牛肉膏为单一氮源、初始pH值为5.00、温度为35 °C的条件下培养72 h,尿酸降解率上升至17.19%,降解率比优化前提高了42.3%;从该菌系中分离出两株具有尿酸降解能力的菌株UA-1与UA-2,它们的尿酸降解率分别为10.85%和8.65%;通过形态学观察和16S rRNA基因序列分析,经鉴定两株菌均为布氏乳杆菌(Lactobacillus buchneri)。将两株单菌组合降解尿酸试验发现,UA-1与UA-2比例为2:1的尿酸降解率为20.2%,比原复合菌系的降解能力提高了67.22%。【结论】研究证明了乳酸菌复合菌系对尿酸的降解能力优于单个菌株,为后续利用乳酸菌复合菌系应用提供了数据支持。  相似文献   
6.
木质素降解菌BYL-7的筛选及降解条件优化   总被引:3,自引:3,他引:0  
【背景】微生物降解木质素因其具有降解效率高和环保等特点而备受关注。【目的】筛选高效木质素降解真菌,并对其降解条件进行优化。【方法】通过愈创木酚-马铃薯葡萄糖琼脂(potato dextrose agar,PDA)和苯胺蓝平板法筛选高效木质素降解菌株,利用单因素筛选及响应面试验对培养条件进行优化。【结果】筛选到一株高效木质素降解菌BYL-7,经形态和多序列分析初步确定为Trametes versicolor。单因素试验证明初始pH、温度和接种量为降解木质素显著影响因子,响应面试验确定降解木质素最优条件为:初始pH 6.7,温度25 °C,接种量8%。在此条件下,碱性木质素降解率为36.5%,比未优化前提高54.0%;水稻秸秆木质素、半纤维素和纤维素降解率分别为32.8%、21.5%、13.2%,其中木质素降解率比未优化前提高36.1%;漆酶活性在第6天达到峰值120.0 U/L,比未优化前提高25.0%;木质素过氧化物酶活性在第6天达到峰值1 343.8 U/L,比未优化前提高36.0%;锰过氧化物酶活性在第5天达到峰值463.8 U/L,比未优化前提高31.7%。【结论】研究结果为木质素的降解提供了良好的菌种资源,同时也为后续木质素的研究积累了相关数据。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号