首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
Lignin, an abundant renewable resource in nature, is a highly heterogeneous biopolymer consisting of phenylpropanoid units. It is essential for sustainable utilization of biomass to convert lignin to value‐added products. However, there are technical obstacles for lignin valorization due to intrinsic heterogeneity. The emerging of synthetic biology technologies brings new opportunities for lignin breakdown and utilization. In this review, we discussed the applications of synthetic biology on lignin conversion, especially the production of value‐added products, such as aromatic chemicals, ring‐cleaved chemicals from lignin‐derived aromatics and bio‐active substances. Synthetic biology will offer new potential strategies for lignin valorization by optimizing lignin degradation enzymes, building novel artificial converting pathways, and improving the chassis of model microorganisms.  相似文献   

2.
《Trends in biotechnology》2022,40(12):1550-1566
Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a ‘biological funnel’ offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.  相似文献   

3.
赵一全  张慧  张晓昱  谢尚县 《微生物学报》2020,60(12):2717-2733
木质纤维素是地球上最丰富的可再生资源。我国每年产生约9亿吨农业秸秆,因得不到有效利用,不仅造成资源浪费,也产生了诸多严峻的环境问题。缺少木质素的高效降解和资源化利用技术是限制木质纤维素产业化的主要瓶颈之一。虽然木质素的降解与转化多年来一直都受到关注,但是由于木质素结构的复杂性及异质性,使其高效利用受限。近年来,微生物具有的“生物漏斗”式转化特性为木质素的高值转化和利用提供了新方向。本文就生物质利用研究以来,微生物在木质素解聚与转化方面的研究历程与最新进展进行了简要的回顾与总结,并初步讨论了目前木质素高值转化面临的机遇与挑战。  相似文献   

4.
合成生物学是一个基于生物学和工程学原理的科学领域,其目的是重新设计和重组微生物,以优化或创建具有增强功能的新生物系统。该领域利用分子工具、系统生物学和遗传框架的重编程,从而构建合成途径以获得具有替代功能的微生物。传统上,合成生物学方法通常旨在开发具有成本效益的微生物细胞工厂进而从可再生资源中生产化学物质。然而,近年来合成生物学技术开始在环境保护中发挥着更直接的作用。本综述介绍了基因工程中的合成生物学工具,讨论了基于基因工程的微生物修复策略,强调了合成生物学技术可以通过响应特定污染物进行生物修复来保护环境。其中,规律间隔成簇短回文重复序列(Clustered Regularly Interspersed Short Palindromic Repeats, CRISPR)技术在基因工程细菌和古细菌的生物修复中得到了广泛应用,生物修复领域也出现了很多新的先进技术,包括生物膜工程、人工微生物群落的构建、基因驱动、酶和蛋白质工程等。有了这些新的技术和工具,生物修复将成为当今最好和最有效的污染物去除方式之一。  相似文献   

5.
In the context of increasing demand for renewable alternatives of fuels and chemicals, the valorization of lignin emerges as a value-adding strategy in biorefineries and an alternative to petroleum-derived molecules. One of the compounds derived from lignin is ferulic acid (FA), which can be converted into valuable molecules such as vanillin. In microorganisms, FA biotransformation into vanillin can occur via a two-step reaction catalyzed by the sequential activity of a feruloyl-CoA synthetase (FCS) and an feruloyl-CoA hydratase-lyase (FCHL), which could be exploited industrially. In this study, a prokaryotic FCHL derived from a lignin-degrading microbial consortium (named LM-FCHL) was cloned, successfully expressed in soluble form and purified. The crystal structure was solved and refined at 2.1 Å resolution. The LM-FCHL is a hexamer composed of a dimer of trimers, which showed to be quite stable under extreme pH conditions. Finally, small angle X-ray scattering corroborates the hexameric state in solution and indicates flexibility in the protein structure. The present study contributes to the field of lignin valorization to valuable molecules by establishing the biophysical and structural characterization for a novel FCHL member of unique characteristics.  相似文献   

6.
Lignin holds tremendous potential as a renewable feedstock for upgrading to a number of high-value chemicals and products that are derived from the petroleum industry at present. Since lignin makes up a significant fraction of lignocellulosic biomass, co-utilization of lignin in addition to cellulose and hemicelluloses is vital to the economic viability of cellulosic biorefineries. The recalcitrant nature of lignin, originated from the molecule's compositional and structural heterogeneity, however, poses great challenges toward effective and selective lignin depolymerization and valorization. Ionic liquid (IL) is a powerful solvent that has demonstrated high efficiency in fractionating lignocellulosic biomass into sugar streams and a lignin stream of reduced molecular weight. Compared to thermochemical methods, biological lignin deconstruction takes place at mild temperature and pressure while product selectivity can be potentially improved via the specificity of biocatalysts (lignin degrading enzymes, LDEs). This review focuses on a lignin valorization strategy by harnessing the biomass fractionating capabilities of ILs and the substrate and product selectivity of LDEs. Recent advances in elucidating enzyme-IL interactions as well as strategies for improving enzyme activity in IL are discussed, with specific emphases on biocompatible ILs, thermostable and IL-tolerant enzymes, enzyme immobilization, and surface charge engineering. Also reviewed is the protein engineering toolsets (directed evolution and rational design) to improve the biocatalysts' activity, stability and product selectivity in IL systems. The alliance between IL and LDEs offers a great opportunity for developing a biocatalytic route for lignin valorization.  相似文献   

7.
Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels.  相似文献   

8.
The emerging field of synthetic biology holds tremendous potential for developing novel drugs to treat various human conditions. The current study discusses the scope of synthetic biology for human therapeutics via microbial approach. In this context, synthetic biology aims at designing, engineering and building new microbial synthetic cells that do not pre-exist in nature as well as re-engineer existing microbes for synthesis of therapeutic products. It is expected that the construction of novel microbial genetic circuitry for human therapeutics will greatly benefit from the data generated by ??omics?? approaches and multidisciplinary nature of synthetic biology. Development of novel antimicrobial drugs and vaccines by engineering microbial systems are a promising area of research in the field of synthetic biology for human theragnostics. Expression of plant based medicinal compounds in the microbial system using synthetic biology tools is another avenue dealt in the present study. Additionally, the study suggest that the traditional medicinal knowledge can do value addition for developing novel drugs in the microbial systems using synthetic biology tools. The presented work envisions the success of synthetic biology for human therapeutics via microbial approach in a holistic manner. Keeping this in view, various legal and socio-ethical concerns emerging from the use of synthetic biology via microbial approach such as patenting, biosafety and biosecurity issues have been touched upon in the later sections.  相似文献   

9.
木质素高值转化对于提升生物炼制经济性,促进社会经济绿色发展具有重要意义。然而,木质素结构复杂且不均一,其高值化利用仍存在技术壁垒,使得木质素应用尚未形成规模。文中首先综述了当前生物炼制过程中木质素高值转化面临的主要挑战。然后通过比较不同预处理技术对木质素分离、性质及其利用的主要影响,详细阐述了基于生物炼制理念发展的新型组合预处理技术。其次,针对木质素本征结构特性导致其利用效率低等问题,进一步详述了溶剂分级、膜分级、梯度沉淀分级等分级利用策略对克服木质素不均一性,改善其可加工性能的重要影响。再次,针对木质素利用策略,系统比较了木质素热化学转化和生物转化,结合生物质预处理及木质素分级,阐述了以生物炼制理念进行木质素高值转化的新策略。最后,总结了木质素利用过程中存在的挑战性问题,展望了木质素高效分离、分级及转化过程发展的新策略和新趋势。  相似文献   

10.
合成微生物体系作为自下而上构建的人工合成微生物群落,相比于自然微生物群落具有复杂度低及可控性、可操作性强等特点。其作为新兴的生物技术,综合借鉴了合成生物学、系统生物学、生物进化等知识,通过合理的设计、规划与调控,成为研究微生物生态学理论的实验平台,以及验证已知理论的微生物系统。本文首先简单介绍了合成微生物体系的概念及其由来,阐述了其基本构建原则,随后介绍了其生态学理论基础,并总结概括了近年来的实际应用,最后提出合成微生物体系的发展前景,包括需要设计构建更为复杂的人工合成微生物群落,以及优化生态模型。  相似文献   

11.
During 2007 and 2008 synthetic biology moved from the manifesto stage to research programs. As of 2009, synthetic biology is ramifying; to ramify means to produce differentiated trajectories from previous determinations. From its inception, most of the players in synthetic biology agreed on the need for (a) rationalized design and construction of new biological parts, devices, and systems as well as (b) the re-design of natural biological systems for specified purposes, and that (c) the versatility of designed biological systems makes them suitable to address such challenges as renewable energy, the production of inexpensive drugs, and environmental remediation, as well as providing a catalyst for further growth of biotechnology. What is understood by these goals, however, is diverse. Those assorted understandings are currently contributing to different ramifications of synthetic biology. The Berkeley Human Practices Lab, led by Paul Rabinow, is currently devoting its efforts to documenting and analyzing these ramifications as they emerge.  相似文献   

12.
Journal of Industrial Microbiology & Biotechnology - The economic viability of the biorefinery concept is limited by the valorization of lignin. One possible method of lignin valorization is...  相似文献   

13.
Owing to our increasing concerns on the environment, climate change, and limited natural resources, there has recently been considerable effort exerted to produce chemicals and materials from renewable biomass. Polymers we use everyday can also be produced either by direct fermentation or by polymerization of monomers that are produced by fermentation. Recent advances in metabolic engineering combined with systems biology and synthetic biology are allowing us to more systematically develop superior strains and bioprocesses for the efficient production of polymers and monomers. Here, we review recent trends in microbial production of building block chemicals that can be subsequently used for the synthesis of polymers. Also, recent successful cases of direct one-step production of polymers are reviewed. General strategies for the production of natural and unnatural platform chemicals are described together with representative examples.  相似文献   

14.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   

15.
基于生物质资源生产环境友好的生物燃料,对经济和社会的可持续发展具有重要意义,但其生产成本高的问题十分突出,而高效生产菌株的获得是解决这一问题的根本出路。以下综述了利用系统生物学研究所获得的信息进行菌种改造的过程,重点论述了生产菌株胁迫耐受性方面的研究进展,并讨论了系统生物学、合成生物学和代谢工程技术在改造生物燃料生产菌株中的应用,展望了合成生物学在构建高效生物能源生产菌株方面应用的前景。  相似文献   

16.
Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed.  相似文献   

17.
人工微生物混菌系统的生物工程应用价值日益受到重视,使得对于混菌系统中成员菌间的相互作用机制研究也成为近年来的一个热点.其研究结果一方面可以为现有人工混菌系统的进一步优化提供理论依据,另一方面也为全新混菌系统的人工构建提供新的思路和策略,进而促进人工微生物混菌系统未来规模化应用.基因组学、转录组学、蛋白质组学和代谢组学等...  相似文献   

18.
New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications.  相似文献   

19.
Increasing concerns over limited petroleum resources and associated environmental problems are motivating the development of efficient cell factories to produce chemicals, fuels, and materials from renewable resources in an environmentally sustainable economical manner. Bacillus spp., the best characterized Gram-positive bacteria, possesses unique advantages as a host for producing microbial enzymes and industrially important biochemicals. With appropriate modifications to heterologous protein expression and metabolic engineering, Bacillus species are favorable industrial candidates for efficiently converting renewable resources to microbial enzymes, fine chemicals, bulk chemicals, and fuels. Here, we summarize the recent advances in developing Bacillus spp. as a cell factory. We review the available genetic tools, engineering strategies, genome sequence, genome-scale structure models, proteome, and secretion pathways, and we list successful examples of enzymes and industrially important biochemicals produced by Bacillus spp. Furthermore, we highlight the limitations and challenges in developing Bacillus spp. as a robust and efficient production host, and we discuss in the context of systems and synthetic biology the emerging opportunities and future research prospects in developing Bacillus spp. as a microbial cell factory.  相似文献   

20.
陈国强 《生物工程学报》2013,29(8):1041-1043
合成生物学目前在全球得到迅猛发展。在此专刊中,综述了一些相关技术在合成生物学领域的进展,其中有:链霉菌无痕敲除方法、基因合成技术、DNA组装新方法、最小化基因组的方法及分析、合成生物系统的组合优化。也讨论了应用合成生物学策略优化光合蓝细菌底盘、产溶剂梭菌分子遗传操作技术、蛋白质预算(Protein budget)作为合成生物学的成本标尺。最后,用几个例子说明了合成生物学的应用,包括复杂天然产物合成人工生物系统的设计与构建、微生物木糖代谢途径改造制备生物基化学品以及构建酿酒酵母工程菌合成香紫苏醇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号