首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dha regulon in Klebsiella pneumoniae enables the organism to grow anaerobically on glycerol and produce 1,3-propanediol (1,3-PD). Escherichia coli, which does not have a dha system, is unable to grow anaerobically on glycerol without an exogenous electron acceptor and does not produce 1,3-PD. A genomic library of K. pneumoniae ATCC 25955 constructed in E. coli AG1 was enriched for the ability to grow anaerobically on glycerol and dihydroxyacetone and was screened for the production of 1,3-PD. The cosmid pTC1 (42.5 kb total with an 18.2-kb major insert) was isolated from a 1,3-PD-producing strain of E. coli and found to possess enzymatic activities associated with four genes of the dha regulon: glycerol dehydratase (dhaB), 1,3-PD oxidoreductase (dhaT), glycerol dehydrogenase (dhaD), and dihydroxyacetone kinase (dhaK). All four activities were inducible by the presence of glycerol. When E. coli AG1/pTC1 was grown on complex medium plus glycerol, the yield of 1,3-PD from glycerol was 0.46 mol/mol. The major fermentation by-products were formate, acetate, and D-lactate. 1,3-PD is an intermediate in organic synthesis and polymer production. The 1,3-PD fermentation provides a useful model system for studying the interaction of a biochemical pathway in a foreign host and for developing strategies for metabolic pathway engineering.  相似文献   

2.
I T Tong  H H Liao    D C Cameron 《Applied microbiology》1991,57(12):3541-3546
The dha regulon in Klebsiella pneumoniae enables the organism to grow anaerobically on glycerol and produce 1,3-propanediol (1,3-PD). Escherichia coli, which does not have a dha system, is unable to grow anaerobically on glycerol without an exogenous electron acceptor and does not produce 1,3-PD. A genomic library of K. pneumoniae ATCC 25955 constructed in E. coli AG1 was enriched for the ability to grow anaerobically on glycerol and dihydroxyacetone and was screened for the production of 1,3-PD. The cosmid pTC1 (42.5 kb total with an 18.2-kb major insert) was isolated from a 1,3-PD-producing strain of E. coli and found to possess enzymatic activities associated with four genes of the dha regulon: glycerol dehydratase (dhaB), 1,3-PD oxidoreductase (dhaT), glycerol dehydrogenase (dhaD), and dihydroxyacetone kinase (dhaK). All four activities were inducible by the presence of glycerol. When E. coli AG1/pTC1 was grown on complex medium plus glycerol, the yield of 1,3-PD from glycerol was 0.46 mol/mol. The major fermentation by-products were formate, acetate, and D-lactate. 1,3-PD is an intermediate in organic synthesis and polymer production. The 1,3-PD fermentation provides a useful model system for studying the interaction of a biochemical pathway in a foreign host and for developing strategies for metabolic pathway engineering.  相似文献   

3.
由于Klebsiella pneumoniae 1,3-丙二醇合成途径中,加强甘油脱水酶基因表达,导致因NADH供应不足使3-羟基丙醛累积,并对菌体生长及1,3-丙二醇合成造成负面影响。为改善Klebsiella pneumoniae 1,3-丙二醇合成途径,本文利用PCR技术从大肠杆菌(Escherichia coli)中扩增出以NADPH 为辅酶的1,3-丙二醇氧化还原酶同工酶编码基因yqhD,从克雷伯氏杆菌中扩增出2.66kb的甘油脱水酶基因(dhaB),构建了产1,3-丙二醇关键酶基因的串联载体pEtac-dhaB-tac-yqhD,并将其转入到野生克雷伯氏杆菌(Klebsiella pneumoniae)中,重组载体得到了表达。通过初步发酵,重组后的克雷伯氏杆菌产量比原始菌高20%左右,副产物中乙酸和丁二醇分别下降30%左右。  相似文献   

4.
High levels of glycerol significantly inhibit cell growth and 1,3-propanediol (1,3-PD) production in anaerobic glycerol fermentation by genetically engineered Escherichia coli (E. coli) strains expressing genes from the Klebsiella pneumoniae dha (K.pneumoniae) regulon. We have previously demonstrated that 1,3-PD production by the engineered E. coli can be improved by reducing the accumulation of methylglyoxal. This study focuses on investigation of another lesser-known metabolite in the pathways related to 1,3-PD production-glycerol-3-phosphate (G3P). When grown anaerobically on glycerol in the absence of an exogenous acceptor, the engineered E. coli strains have intracellular G3P levels that are significantly higher than those in K. pneumoniae, a natural 1,3-PD producer. Furthermore, in the engineered E. coli strains, the G3P levels increase with increasing glycerol concentrations, whereas, in K. pneumoniae, the concentrations of G3P remain relatively constant. Addition of fumarate, which can stimulate activity of anaerobic G3P dehydrogenase, into the fermentation medium led to a greater than 30-fold increase in the specific activity of anaerobic G3P dehydrogenase and a significant decrease in concentrations of intracellular G3P and resulted in better cell growth and an improved production of 1,3-PD. This indicates that the low activity of G3P dehydrogenase in the absence of an exogenous electron acceptor is one of the reasons for G3P accumulation. In addition, spent media from E.coli Lin61, a glycerol kinase (responsible for conversion of glycerol to G3P) mutant, contains greatly decreased concentrations of G3P and shows improved production of 1,3-PD (by 2.5-fold), when compared to media from its parent strain E. coli K10. This further suggests that G3P accumulation is one of the reasons for the inhibition of 1,3-PD production during anaerobic fermentation.  相似文献   

5.
1,2-Propanediol (1,2-PD) is a major commodity chemical that is currently derived from propylene, a nonrenewable resource. A goal of our research is to develop fermentation routes to 1,2-PD from renewable resources. Here we report the production of enantiomerically pure R-1,2-PD from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes (E. coli gldA or Klebsiella pneumoniae dhaD). We also show that E. coli overexpressing the E. coli methylglyoxal synthase gene (mgs) produced 1,2-PD. The expression of either glycerol dehydrogenase or methylglyoxal synthase resulted in the anaerobic production of approximately 0.25 g of 1,2-PD per liter. R-1,2-PD production was further improved to 0.7 g of 1,2-PD per liter when methylglyoxal synthase and glycerol dehydrogenase (gldA) were coexpressed. In vitro studies indicated that the route to R-1,2-PD involved the reduction of methylglyoxal to R-lactaldehyde by the recombinant glycerol dehydrogenase and the reduction of R-lactaldehyde to R-1, 2-PD by a native E. coli activity. We expect that R-1,2-PD production can be significantly improved through further metabolic and bioprocess engineering.  相似文献   

6.
Jin P  Li S  Lu SG  Zhu JG  Huang H 《Bioresource technology》2011,102(2):1815-1821
To improve 1,3-propanediol (1,3-PD) production by an economic and efficient approach, hemicellulosic hydrolysates (HH) used as cosubstrate resulted in more biomass and higher reducing power for 1,3-PD production. The effects of primary degradation products such as individual sugars (xylose, glucose, mannose, arabinose and galactose) and major inhibitors (furfural, acetate and formate) on the Klebsiella pneumoiae growth and 1,3-PD production were investigated in this study. Xylose and mannose could efficiently promote the 1,3-PD production and cell growth. Furfural (0.28 g/l) and sodium acetate (1.46 g/l) in low concentration were not inhibitory to Klebsiella pneumoniae, rather they have stimulatory effect on the growth and 1,3-PD biosynthesis, especially the acetate. In fed-batch fermentation with HH as cosubstrate, the final 1,3-PD production, conversion from glycerol and productivity were 71.58 g/l, 0.65 mol/mol and 1.93 g/l/h, respectively, which were 17.8%, 25.0% and 17.7% higher than that from glycerol alone.  相似文献   

7.
We generated a genetically engineered Klebsiella pneumoniae strain (AK-VOT) to eliminate by-product formation during production of 1,3-propanediol (1,3-PD) from glycerol. In the present study, the glycerol-metabolizing properties of the recombinant strain were examined during fermentation in a 5 L bioreactor. As expected, by-product formation was completely absent (except for acetate) when the AK-VOT strain fermented glycerol. However, 1,3-PD productivity was severely reduced owing to a delay in cell growth attributable to a low rate of glycerol consumption. This problem was solved by establishing a two-stage process separating cell growth from 1,3-PD production. In addition, nutrient co-supplementation, especially with starch, significantly increased 1,3-PD production from glycerol during fed-batch fermentation by AK-VOT in the absence of by-product formation.  相似文献   

8.
Construction and Characterization of a 1,3-Propanediol Operon   总被引:19,自引:0,他引:19       下载免费PDF全文
The genes for the production of 1,3-propanediol (1,3-PD) in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, are naturally under the control of two different promoters and are transcribed in different directions. These genes were reconfigured into an operon containing dhaB followed by dhaT under the control of a single promoter. The operon contains unique restriction sites to facilitate replacement of the promoter and other modifications. In a fed-batch cofermentation of glycerol and glucose, Escherichia coli containing the operon consumed 9.3 g of glycerol per liter and produced 6.3 g of 1,3-PD per liter. The fermentation had two distinct phases. In the first phase, significant cell growth occurred and the products were mainly 1,3-PD and acetate. In the second phase, very little growth occurred and the main products were 1,3-PD and pyruvate. The first enzyme in the 1,3-PD pathway, glycerol dehydratase, requires coenzyme B12, which must be provided in E. coli fermentations. However, the amount of coenzyme B12 needed was quite small, with 10 nM sufficient for good 1,3-PD production in batch cofermentations. 1,3-PD is a useful intermediate in the production of polyesters. The 1,3-PD operon was designed so that it can be readily modified for expression in other prokaryotic hosts; therefore, it is useful for metabolic engineering of 1,3-PD pathways from glycerol and other substrates such as glucose.  相似文献   

9.
Anaerobic glycerol fermentation by Escherichia coli strains expressing genes from the Klebsiella pneumoniae dha regulon showed that cell growth and 1,3-propanediol (1,3-PD) production are significantly inhibited when 5 g/L or higher of glycerol is initially present. One reason for this inhibition may be methylglyoxal (MG) accumulation. Assays of both intracellular and extracellular MG levels indicated an accumulation of MG in anaerobic glycerol fermentation of transgenic E. coli. Pseudomonas putida glyoxalase I was expressed in the transgenic E. coli to enhance MG detoxification. The activity of glyoxalase I in the transgenic E. coli with the P. putida glyoxalase I under anaerobic conditions was 12-fold higher than that in the control cells. Compared to the control cells, the transgenic cells with the P. putida glyoxalase I displayed a reduction of 35-43% in intracellular MG and a decrease of 30% in extracellular MG. These decreases were statistically significant (P>94). Furthermore, the expression of the P. putida glyoxalase I in the transgenic E. coli markedly improved cell growth and resulted in a 50% increase in 1,3-PD production.  相似文献   

10.
The recombinant E. coli Delta6 mutant (galR, glpK, gldA, IdhA, lacI, tpiA) was used to produce 1,3-propanediol (PD) from glucose. The 1,3-PD production increased with feedback control of the glucose concentration using fed-batch fermentation. The maximum 1,3-PD concentration produced was 43 g/l after 60 h of fermentation. Glycerol production was minimized when controlling the glucose concentration at less than 1 g/l. The expression levels of seven enzymes related to the 1,3-PD production metabolism were compared during the cell growth phase and 1,3-PD production phase, and their expression levels all increased during 1,3-PD production, with the exception of alcohol dehydrogenase.  相似文献   

11.
研究了克雷伯肺炎杆菌(Klebsiella pneumoniae)批式流加发酵生产1,3-丙二醇的发酵工艺,根据1,3-丙二醇的生产和菌体生长相关的特点,采用营养基质限制性流加的发酵工艺,通过控制氮源氯化铵以保持细胞稳定生长。结果表明:过低的氮源浓度,细胞生长受到限制,影响产物1,3-PD的合成;过高的氮源浓度,细胞比生长速率增加,但1,3-PD关于消耗甘油的得率降低,用于生长和维持代谢所消耗的甘油量增加。以0.41 g/(L·h)的氮源流加速率,残余氯化铵浓度在0.1 g/L时,转化率和生产强度最高。发酵25 h~28 h后,1,3-丙二醇最终浓度达到52.03 g/L,生产强度为2.04 g/(L·h),相对于甘油的摩尔转化率为0.66,分别比氮源限制前提高了28.0 %、35.1 %及29.4 %。通过限制性流加氯化铵,控制细胞的比生长速率,使底物甘油有效转变为发酵的目标产物1,3-PD,有效实现产物1,3-PD的高生产强度以及对甘油的高转化率。  相似文献   

12.
1,3-Propanediol (1,3-PD) has numerous applications in polymers, cosmetics, foods, lubricants, and medicines as a bifunctional organic compound. The genes for the production of 1,3-PD in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, and gdrAB, which encodes glycerol dehydratase reactivating factor, are naturally under the control of different promoters and are transcribed in different directions. These genes were coexpressed in E. coli using two incompatible plasmids (pET28a and pET22b) in the presence of selective pressure. The recombinant E. coli coexpressed the glycerol dehydratase, 1,3-propanediol oxidoreductase and reactivating factor for the glycerol dehydratase at high levels. In a fed-batch fermentation of glycerol and glucose, the recombinant E. coli containing these two incompatible plasmids consumed 14.3 g/l glycerol and produced 8.6 g/l 1,3-propanediol. In the substitution case of yqhD (encoding alcohol dehydrogenase from E. coli) for dhaT, the final 1,3-propanediol concentration of the recombinant E. coli could reach 13.2 g/l.  相似文献   

13.
The dha regulon of Klebsiella pneumoniae specifying fermentative dissimilation of glycerol was mobilized by the broad-host-range plasmid RP4:mini Mu and introduced conjugatively into Escherichia coli. The recipient E. coli was enabled to grow anaerobically on glycerol without added hydrogen acceptors, although its cell yield was less than that of K. pneumoniae. The reduced cell yield was probably due to the lack of the coenzyme-B12-dependent glycerol dehydratase of the dha system. This enzyme initiates the first step in an auxiliary pathway for disposal of the extra reducing equivalents from glycerol. The lack of this enzyme would also account for the absence of 1,3-propanediol (a hallmark fermentation product of glycerol) in the spent culture medium. In a control experiment, a large quantity of this compound was detected in a similar culture medium following the growth of K. pneumoniae. The other three known enzymes of the dha system, glycerol dehydrogenase, dihydroxyacetone kinase and 1,3-propanediol oxidoreductase, however, were synthesized at levels comparable to those found in K. pneumoniae. Regulation of the dha system in E. coli appeared to follow the same pattern as in K. pneumoniae: the three acquired enzymes were induced by glycerol, catabolite repressed by glucose, and glycerol dehydrogenase was post-translationally inactivated during the shift from anaerobic to aerobic growth. The means by which the E. coli recipient can achieve redox balance without formation of 1,3-propanediol during anaerobic growth on glycerol remains to be discovered.  相似文献   

14.
甘油脱水酶是催化由甘油到1,3-丙二醇过程中的关键酶,它需要在辅酶B_(12)存在的情况下才能有效的进行催化;而在此催化过程中甘油脱水酶会出现失活现象,研究表明辅酶B_(12)可以有效的促使甘油脱水酶复活。因此,辅酶B_(12)在由甘油生物催化生产1,3-丙二醇过程中起到非常重要的作用。本研究利用PCR扩增技术,从Escherichia K-12菌株中扩增出产VB_(12)关键酶—腺苷钴胺素合成酶基因cobs,其序列与NCBI上已经公布的序列比对,同源性为99.6%,将基因cobs与产1,3-丙二醇关键酶基因dhaB、yqhD在Klebsiella pneumoniae中共表达,发酵结果显示重组菌所需额外添加的VB_(12)由原始菌株的0.01 g/L下降到0.004 g/L。  相似文献   

15.
Microbial production of 1,3-propanediol   总被引:79,自引:2,他引:77  
1,3-Propanediol (1,3-PD) production by fermentation of glycerol was described in 1881 but little attention was paid to this microbial route for over a century. Glycerol conversion to 1,3-PD can be carried out by Clostridia as well as Enterobacteriaceae. The main intermediate of the oxidative pathway is pyruvate, the further utilization of which produces CO2, H2, acetate, butyrate, ethanol, butanol and 2,3-butanediol. In addition, lactate and succinate are generated. The yield of 1,3-PD per glycerol is determined by the availability of NADH2, which is mainly affected by the product distribution (of the oxidative pathway) and depends first of all on the microorganism used but also on the process conditions (type of fermentation, substrate excess, various inhibitions). In the past decade, research to produce 1,3-PD microbially was considerably expanded as the diol can be used for various polycondensates. In particular, polyesters with useful properties can be manufactured. A prerequisite for making a “green” polyester is a more cost-effective production of 1,3-PD, which, in practical terms, can only be achieved by using an alternative substrate, such as glucose instead of glycerol. Therefore, great efforts are now being made to combine the pathway from glucose to glycerol successfully with the bacterial route from glycerol to 1,3-PD. Thus, 1,3-PD may become the first bulk chemical produced by a genetically engineered microorganism. Received: 12 January 1999 / Received revision: 9 March 1999 / Accepted: 14 March 1999  相似文献   

16.
In the Klebsiella pneumoniae reduction pathway for 1,3-propanediol (1,3-PD) synthesis, glycerol is first dehydrated to 3-hydroxypropionaldehyde (3-HPA) and then reduced to 1,3-PD with NADH consumption. Rapid conversion of 3-HPA to 1,3-PD is one of the ways to improve the yield of 1,3-PD from glycerol and to avoid 3-HPA accumulation, which depends on enzyme activity of the reaction and the amount of reducing equivalents available from the oxidative pathway of glycerol. In the present study, the yqhD gene, encoding 3-propanediol oxidoreductase isoenzyme from Escherichia coli and the dhaT gene, encoding 3-propanediol oxidoreductase from K. pneumoniae were expressed individually and co-expressed in K. pneumoniae using the double tac promoter expression plasmid pEtac-dhaT-tac-yqhD. The three resultant recombinant strains (K. pneumoniae/pEtac-yqhD, K. pneumoniae/pEtac-dhaT, and K. pneumoniae/pEtac-dhaT-tac-yqhD) were used for fermentation studies. Experimental results showed that the peak values for 3-HPA production in broth of the three recombinant strains were less than 25% of that of the parent strain. Expression of dhaT reduced formation of by-products (ethanol and lactic acid) and increased molar yield of 1,3-PD slightly, while expression of yqhD did not enhance molar yield of 1,3-PD, but increased ethanol concentration in broth as NADPH participation in transforming 3-HPA to 1,3-PD allowed more cellular NADH to be used to produce ethanol. Co-expression of both genes therefore decreased by-products and increased the molar yield of 1,3-PD by 11.8%, by catalyzing 3-HPA conversion to 1,3-propanediol using two cofactors (NADH and NADPH). These results have important implications for further studies involving use of YqhD and DhaT for bioconversion of glycerol into 1,3-PD.  相似文献   

17.
The 1,3-propanediol (1,3-PD) synthesis operon (dha operon) was mainly composed of four genes: dhaB, dhaT, gdrA, and gdrB, which encoded glycerol dehydratase, 1,3-PD oxidoreductase and reactivating factor for glycerol dehydratase, respectively. In the present study, dha operon was cloned from 1,3-PD producing strain Klebsiella pneumoniae. Heterologous expression of cloned dha operon was carried out in Escherichia coli and Saccharomyces cerevisiae W303-1A, respectively. The results indicated that recombinant E. coli harboring the dha operon can produce 8–9 g/l 1,3-PD from glycerol while the 1,3-PD yield of recombinant strain W303-1A-dha could not be detected. In order to complete the 1,3-PD production from glucose, further, we also constructed the recombinant S. cerevisiae W303-1A-BT harboring plasmid pZ-BT. The 1,3-PD production and enzymatic activities of DhaB and DhaT were found in the engineered strain W303-1A-BT. Our results demonstrated that the recombinant S. cerevisiae strain W303-1A-BT that can produce 1,3-PD at low cost was constructed. This study might open a novel way to a safe and cost-efficient method for microbial production of 1,3-PD.  相似文献   

18.
The glycerol fed-batch fermentation by Klebsiella pneumoniae CGMCC 1.6366 exhibited the sequential synthesis of products, including acetate, 1,3-propanediol (1,3-PD), 2,3-butanediol, ethanol, succinate, and lactate. The dominant flux distribution was shifted from acetate formation to 1,3-PD formation in early- exponential growth phase and then to lactate synthesis in late-exponential growth phase. The underlying physiological mechanism of the above observations has been investigated via the related enzymes, nucleotide, and intermediary metabolites analysis. The carbon flow shift is dictated by the intrinsic physiological state and enzymatic activity regulation. Especially, the internal redox state could serve as a rate-controlling factor for 1,3-PD production. The q(1,3-PD) formation was the combined outcomes of regulations of glycerol dehydratase activity and internal redox balancing. The q(ethanol)/q(acetate) ratios demonstrated the flexible adaptation mechanism of K. pneumoniae preferring ATP generation in early-exponential growth phase. A low PEP to pyruvate ratio corresponded LDH activity increase, leading to lactate accumulation in stationary phase.  相似文献   

19.
1,2-Propanediol (1,2-PD) is a major commodity chemical currently derived from propylene. Previously, we have demonstrated the production of enantiomerically pure (R)-1,2-propanediol from glucose by an engineered E. coli expressing genes for NADH-linked glycerol dehydrogenase and methylglyoxal synthase. In this work, we investigate three methods to improve 1,2-PD in E. coli. First, we investigated improving the host by eliminating production of a byproduct, lactate. To do this, we constructed strains with mutations in two enzymes involved in lactate production, lactate dehydrogenase and glyoxalase I. (Surprisingly, when mutations were made in its ability to produce lactate, one strain of E. coli [MM294], produced a small amount of 1,2-PD without any added genes.) Second, we constructed a complete pathway to 1,2-PD from the glycolytic intermediate, dihydroxyacetone phosphate. Our previous 1, 2-PD producing strains relied on at least one endogenous E. coli activity and only produced 0.7 g/L of 1,2-PD. The complete pathway involved the coexpression of methylglyoxal synthase (mgs), glycerol dehydrogenase (gldA), and either yeast alcohol dehydrogenase (adhI) or E. coli 1,2-propanediol oxidoreductase (fucO). Third, we investigated bioprocessing improvements by carrying out a fed-batch fermentation with the best engineered strain (expressing mgs, gldA, and fucO). A final titer of 4.5 g/L of (R)-1,2-PD was produced, with a final yield of 0.19 g of 1,2-PD per gram of glucose consumed. This work provides a basis for further strain and process improvement.  相似文献   

20.
将来自于肺炎克雷伯氏杆菌的甘油脱水酶基因插入到质粒pET28(a+) -yqhD的上游,并用SD序列隔开,串联构建重组质粒pET28(a+)dhaBCE-yqhD,转化到大肠杆菌E.coli novablue中进行共表达。结果显示:含有pET28(a+) dhaBCE-yqhD的重组菌在28℃条件下,IPTG诱导16h后,甘油脱水酶和yqhD氧化还原酶的酶活力分别达到35 U/ mg和 82 U/ mg ,而对照组检测不到甘油脱水酶酶活;当甘油浓度为55g/L,产物1,3-PD的产量可达39g/L;甘油浓度过量不利于产物合成,且产物1,3-丙二醇对合成反应具有一定的抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号