首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tannase enzyme from Aspergillus oryzae was immobilized on various carriers by different methods. The immobilized enzyme on chitosan with a bifunctional agent (glutaraldehyde) had the highest activity. The catalytic properties and stability of the immobilized tannase were compared with the corresponding free enzyme. The bound enzyme retained 20·3% of the original specific activity exhibited by the free enzyme. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 55 °C for the immobilized form. The stability at low pH, as well as thermal stability, were significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation as reflected by a higher apparent Km value and a lower energy of activation. The immobilized enzyme retained about 85% of the initial catalytic activity, even after being used 17 times.  相似文献   

2.
A lysosomal cysteine protease cathepsin L (3.4.22.15) purified from goat brain has been immobilized in calcium alginate beads in the presence of BSA through entrapment. Most favorable conditions for the entrapment were standardized as 3.0%(w/v) alginate and 1.5%(w/v) calcium chloride. Comparing the properties of free and immobilized enzyme using Z-Phe-Arg-4mβNA as chromogenic substrate, it was found that the immobilized enzyme could retain~70% of the original activity after five successive batch reactions. Vis-à-vis the free enzyme, immobilization conferred high stability to the enzyme both in the acidic and alkaline range, the enzyme lost no activity up to 60°C (Temperature stability for free enzyme is only up to 50°C). The pH optima for the enzyme shifted from 6.2 to 6.6 on entrapment. The increase in activity and stability of the enzyme in immobilized form even in the presence of high concentration of DMSO and ethanol is surprising and may make it useful for catalyzing organic reactions like trans-esterification and trans-amidation.  相似文献   

3.
《Process Biochemistry》1999,34(4):391-398
The production of dextranase was investigated in static cultures of Penicillium funiculosum 258. Maximal enzyme productivity was attained at pH 8.0, with 3.5% (w/v) dextran (MW, 260 000) as carbon source, NaNO3 (1%, w/v) and yeast extract (0.2%, w/v) as nitrogen source, 0.4% (w/v) K2HPO4 and 0.06% (w/v) MgSO4. It was possible to increase the productivity of dextranase to 41.8 units ml−1 in the modified medium. The enzyme was immobilized on different carriers by different techniques of immobilization. The enzyme prepared by covalent binding on chitosan using glutaraldehyde had the highest activity, the immobilized enzyme retaining 63% of its original specific activity. Compared with the free dextranase, the immobilized enzyme exhibited: a higher pH optimum, a higher optimal reaction temperature and energy of activation, a higher Michaelis constant, improved thermal stability and higher values of deactivation rate constant. The immobilized enzyme retained about 80% of the initial catalytic activity even after being used for 12 cycles.  相似文献   

4.
A novel and efficient immobilization of β-d-galactosidase from Aspergillus oryzae has been developed by using magnetic Fe3O4–chitosan (Fe3O4–CS) nanoparticles as support. The magnetic Fe3O4–CS nanoparticles were prepared by electrostatic adsorption of chitosan onto the surface of Fe3O4 nanoparticles made through co-precipitation of Fe2+ and Fe3+. The resultant material was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. β-d-Galactosidase was covalently immobilized onto the nanocomposites using glutaraldehyde as activating agent. The immobilization process was optimized by examining immobilized time, cross-linking time, enzyme concentration, glutaraldehyde concentration, the initial pH values of glutaraldehyde and the enzyme solution. As a result, the immobilized enzyme presented a higher storage, pH and thermal stability than the soluble enzyme. Galactooligosaccharide was formed with lactose as substrate by using the immobilized enzyme as biocatalyst, and a maximum yield of 15.5% (w/v) was achieved when about 50% lactose was hydrolyzed. Hence, the magnetic Fe3O4–chitosan nanoparticles are proved to be an effective support for the immobilization of β-d-galactosidase.  相似文献   

5.
以自制的壳聚糖作为载体,用戊二醛作交联剂,优化了固定化条件,研制成壳聚糖固定化木瓜蛋白酶。其活性回收率达到42—53%,操作半衰期达到一个月以上,对热、乙醇以及尿素的稳定性有很大的提高,Km值为0.67×10~2mg/mL,最适温度65—70℃,最适pH8.0,能使啤酒中的蛋白质浓度从56.5mg/L减少到2.7mg/L,可以消除啤酒的低温混浊现象。  相似文献   

6.
Immobilization of Aspergillus beta-glucosidase on chitosan.   总被引:1,自引:0,他引:1  
beta-Glucosidase of Aspergillus phoenicis QM 329 was immobilized on chitosan, using the bifunctional agent glutaraldehyde. The most active preparation based on the amount of support contained a 1:2.5 enzyme-to-chitosan ratio (wt/wt). However, the specific activity of the bound enzyme decreased from 10 to 1% with increasing enzyme-to-chitosan ratio. Compared with free beta-glucosidase, the immobilized enzyme exhibited: (i) a similar pH optimum but more activity at lower pH values; (ii) improved thermal stability; (iii) a similar response to inhibition by glucose; and (iv) mass transfer limitations as reflected by higher apparent Km and lower energy of activation.  相似文献   

7.
Immobilization of Aspergillus beta-glucosidase on chitosan.   总被引:1,自引:0,他引:1       下载免费PDF全文
beta-Glucosidase of Aspergillus phoenicis QM 329 was immobilized on chitosan, using the bifunctional agent glutaraldehyde. The most active preparation based on the amount of support contained a 1:2.5 enzyme-to-chitosan ratio (wt/wt). However, the specific activity of the bound enzyme decreased from 10 to 1% with increasing enzyme-to-chitosan ratio. Compared with free beta-glucosidase, the immobilized enzyme exhibited: (i) a similar pH optimum but more activity at lower pH values; (ii) improved thermal stability; (iii) a similar response to inhibition by glucose; and (iv) mass transfer limitations as reflected by higher apparent Km and lower energy of activation.  相似文献   

8.
曹文娟  袁海生 《菌物学报》2016,35(3):343-354
采用壳聚糖交联法和海藻酸钠-壳聚糖包埋交联法固定化桦褶孔菌产生的漆酶,探讨最佳固定化条件,固定化漆酶的温度,pH稳定性及操作稳定性,并以两种固定化酶分别对4种染料进行了降解.结果表明:(1)壳聚糖交联法固定化漆酶的最佳条件为:壳聚糖2.5%,戊二醛7%,交联时间2h,固定化时间5h,给酶量1g壳聚糖小球:1mL酶液(1U/mL),固定化效率56%;(2)海藻酸钠-壳聚糖包埋交联法固定化漆酶的最佳条件为:海藻酸钠浓度4%,壳聚糖浓度0.7%,氯化钙浓度5%,戊二醛浓度0.6%,给酶量4mL 4%海藻酸钠:1mL酶液(1U/mL),固定化效率高达86%;(3)固定化的漆酶相比游离漆酶有更好的温度和pH稳定性;(4)比较两种固定化漆酶,海藻酸钠-壳聚糖包埋交联法固定化酶的温度及酸度稳定性要优于壳聚糖固定化酶,但可重复操作性要弱于后者,两者重复使用8次后的剩余酶活比率分别为71%及64%;(5)两种固定化酶对所选的4种不同结构的合成染料均有较好的降解效果,其中壳聚糖固定化酶对茜素红的降解效果及重复使用性极佳,重复降解40mg/L的茜素红10次,降解率仍保持在100%.  相似文献   

9.
分别采用海藻酸钠、明胶和壳聚糖为载体,并以戊二醛为交联剂,通过包埋-交联和吸附-交联两种耦合固定化方法制备固定化锰过氧化物酶。探讨了酶的不同固定化条件和固定化酶的部分性能。与游离酶相比,制备的3种固定化酶最适反应pH分别由7·0降低到5·0、5·0和3·0,最适反应温度分别由35℃升高到75℃、55℃和75℃。3种固定化酶的耐热性都显著提高,其中用壳聚糖制成的固定化酶在pH2·2~11的宽范围内表现出很好的酸碱耐受性。30℃连续测定6~9次酶活力,重复使用的3种固定化酶显示出良好的稳定性。将固定化酶应用在偶氮染料的脱色中,用明胶制成的固定化酶在静置和摇床条件下,以及用海藻酸钠制成的固定化酶在摇床条件下,均表现出与游离酶相近的脱色能力,并且在重复进行的摇床实验中,脱色能力未降低,反应前后的酶活力均没有损失。  相似文献   

10.
Summary The glucooligosaccharide oxidase was covalently immobilized to chitosan with polyethyleneimine and glutaraldehyde. Immobilization improved thermal stability. When used for conversion of starch hydrolysate to oligosaccharic acids, the immobilized enzyme maintained 75% initial activity after 60 days of continuous operation. Strong substrate inhibition was seen at high concentrations of cellobiose and lactose for free enzyme but not for immobilized enzyme.  相似文献   

11.
壳聚糖固定化琼脂酶的研究   总被引:1,自引:0,他引:1  
采用壳聚糖微球对琼脂酶进行固定化,在单因素实验的基础上用正交试验法确定最佳固定化工艺。结果表明:在戊二醛体积分数为2.5%,交联时间为6 h,加酶量为15 mL,固定时间为3 h时固定酶的活力最高;固定化酶的最适反应温度及最适pH分别为50℃和8.5,高于游离酶;同时其热稳定性及操作稳定性均高于游离酶。  相似文献   

12.
《Process Biochemistry》2007,42(5):895-898
Chitosan beads were prepared by emulsion method and used for the immobilization of ω-transaminase of Vibrio fluvialis. The yield of enzyme immobilization (54.3%) and its residual activity (17.8%) were higher than those obtained with other commercial beads. ω-Transaminase was effectively immobilized on the chitosan beads at pH 6.0. The optimal pH of the immobilized enzyme was pH 9.0, which is the same as that of the free enzyme. The immobilized enzyme on chitosan beads retained ca. 77% of its conversion after five consecutive reactions with the 25 mM substrate, while the immobilized enzyme on Eupergit® C retained 12%. Also, the immobilized ω-transaminase on chitosan bead retained 70% of initial activity when it's stored at 4 °C for 3.5 weeks. Addition of the co-factor, pyridoxal 5-phosphate (PLP), was needed to maintain the stability of the immobilized ω-transaminase.  相似文献   

13.
The immobilization of papain on the mesoporous molecular sieve MCM‐48 (with a pore size of 6.2 nm in diameter) with the aid of glutaraldehyde, and the characteristics of this immobilized papain are described. The optimum conditions for immobilization were as follows: 20 mg native free enzyme/g of the MCM‐48 and 0.75 % glutaraldehyde, 2 h at 10–20 °C and pH 7.0. Under these optimum conditions for immobilization, the activity yield [%] of the immobilized enzyme was around 70 %. The influence of the pH on the activity of the immobilized enzyme was much lower compared to the free enzyme. The thermostability of the immobilized enzyme, whose half‐life was more than 2500 min, was greatly improved and was found to be significantly higher than that of the free enzyme (about 80 min). The immobilized enzyme also showed good operational stability, and the activity of the immobilized enzyme continued to maintain 76.5 % of the initial activity even after a 12‐day continuous operation. Moreover, the immobilized enzyme still exhibited good storage stability. From these results, papain immobilized on the MCM‐48 with the aid of glutaraldehyde, can be used as a high‐performance biocatalyst in biotechnological processing, in particular in industrial and medical applications.  相似文献   

14.
用硅胶作载体,戊二醛作交联剂,制备了固定化的纤维素酶。对制备固定化纤维素酶的偶联剂浓度、pH、给酶量3个影响因素进行了研究,通过正交试验优化得出最佳的固定化条件:交联剂戊二醛浓度为1%,固定化pH值为5,固载量为每克载体100mg纤维素酶。  相似文献   

15.
Lipase B from Candida antarctica (CALB) has been immobilized on octyl-agarose in two ways: rapidly, in 5 mM sodium phosphate (85% immobilization yield after 30 min), or slowly, in the presence of 30% (v/v) ethanol (40% immobilization yield after 30 min). Both biocatalysts were treated with glutaraldehyde in order to obtain different modification degrees on their amino groups (25, 50 and 100% modification). SDS-PAGE and detergent desorption experiments showed that, when the immobilization was performed in absence of ethanol, very large aggregates were formed by intermolecular crosslinking, while when 30% ethanol was added during immobilization, almost 90% of the enzyme remained as a monomer. The stability of both derivatives improved upon modification, both in thermal inactivation experiments (at pHs 5, 7 and 9) or in the presence of 50% (v/v) dimethylsulfoxide, achieving stabilization values ranging between 5 and 20 depending on the inactivation conditions. The stability increased proportionally with the modification degree, and was also higher when intermolecular bonds were performed (by a 2–4 factor). Moreover, the activity/pH profile was completely altered after enzyme modification, and, under certain conditions, the activity of the modified biocatalysts doubled that of the non-modified immobilized CALB. Results show that the addition of ethanol permits to have a distance between enzyme molecules that did not allow intermolecular crosslinking, and this has permitted to distinguish between the effects of intramolecular glutaraldehyde modifications and intermolecular glutaraldehyde crosslinking. The simple and controlled treatment of CALB-octyl with glutaraldehyde has proved to be an effective way to obtain a biocatalyst with improved activity and stability under different conditions.  相似文献   

16.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

17.
Li T  Wang N  Li S  Zhao Q  Guo M  Zhang C 《Biotechnology letters》2007,29(9):1413-1416
Pectinase was immobilized on a sodium alginate support using glutaraldehyde and retained 66% activity. The optimal pH for activity shifted from 3.0 to 3.5 after immobilization; however, the optimum temperature remained unchanged at 40°C. The immobilized enzyme also had a higher thermal stability and reusability than the free enzyme, and retained 80% of initial activity after 11 batch reactions.  相似文献   

18.
Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support (qm) and dissociation constant (Kd) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at 65 degrees C. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.  相似文献   

19.
Catalase was immobilized on alumina carrier and crosslinked with glutaraldehyde. Storing stability, temperature and pH profiles of enzyme activity were studied in a column reactor with recirculation and in a batch stirred-tank reactor. The immobilized enzyme retained 44% of its activity at pH 11, 30 °C and 90% at 80 °C, pH 7. The half-life time of the immobilized catalase was increased to 2 h at pH 12, and 60 °C. Acceptable results were achieved when the residual water from the washing process of H2O2-bleached fabrics was treated with the immobilized enzyme and then reused for dyeing.  相似文献   

20.
选择6种吸附树脂和离子交换树脂对D-泛解酸内酯水解酶进行固定化,筛选出了固定化效果较好的大孔弱碱性丙烯酸系阴离子交换树脂D-380为载体,用先吸附后交联的方法固定化。通过实验对固定化条件进行了优化,得出最佳的固定化条件为:加酶量6U/g树脂、吸附pH7.5、吸附时间4h、吸附温度30℃、交联剂戊二醛终浓度0.1%、交联时间2h。实验表明在此条件下制得的固定化酶有很好的稳定性:固定化酶在连续20次的底物水解反应后,剩余酶活达到71%。当温度达到80℃时游离酶几乎失去酶活,而固定化酶剩余酶活为60%以上。游离酶的pH稳定性范围为pH7~8,而固定化酶为pH6.5~8.5。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号