首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Clostridium difficile has emerged as the important causative agent of antibiotics-associated pseudomembranous colitis; especially its toxin A is presumed to be responsible for the colitis. We examined the pathophysiological roles of IFN-gamma in toxin A-induced enteritis using IFN-gamma knockout (KO) mice. When toxin A of C. difficile was injected into the ileal loops of BALB/c wild-type (WT) mice, massive fluid secretion, disruption of intestinal epithelial structure, and massive neutrophil infiltration developed within 4 h after the injection. IFN-gamma protein was faintly detected in some CD3-positive lymphocytes in the lamina propria and submucosa of the ileum of untreated WT mice. On the contrary, at 2 and 4 h after toxin A injection, IFN-gamma protein was detected in infiltrating neutrophils and to a lesser degree in CD3-positive lymphocytes. In the ileum of WT mice, toxin A treatment markedly enhanced the gene expression of TNF-alpha, macrophage inflammatory protein-1alpha and -2, KC, and ICAM-1 >2 h after treatment. In contrast, the histopathological changes were marginal, without enhanced fluid secretion in the ileum of toxin A-treated IFN-gamma KO mice. Moreover, toxin A-induced gene expression of TNF-alpha, neutrophil chemotactic chemokines, and ICMA-1 was remarkably attenuated in IFN-gamma KO mice. Furthermore, pretreatment of WT mice with a neutralizing anti-IFN-gamma Ab prevented toxin A-induced enteritis. These observations indicate that IFN-gamma is the crucial mediator of toxin A-induced acute enteritis and suggest that IFN-gamma is an important molecular target for the control of C. difficile-associated pseudomembranous colitis.  相似文献   

3.
We examined the role of glucocorticoids in acute inflammatory diarrhea mediated by Clostridium difficile toxin A. Toxin A (5 microg) or buffer was injected in rat ileal loops, and intestinal responses were measured after 30 min to 4 h. Ileal toxin A administration increased plasma glucocorticoids after 1 h, at which time the toxin-stimulated secretion was not significant. Administration of the glucocorticoid analog dexamethasone inhibited toxin A-induced intestinal secretion and inflammation and downregulated toxin A-mediated increase of macrophage inflammatory protein-2. Adrenalectomy followed by replacement with glucocorticoids at various doses suggested that intestinal responses to toxin A were related to circulating levels of glucocorticoids. Administration of the glucocorticoid receptor antagonist RU-486 enhanced toxin A-mediated intestinal secretion and inflammation. We conclude that C. difficile toxin A causes increased secretion of endogenous glucocorticoids, which diminish the intestinal secretory and inflammatory effects of toxin A.  相似文献   

4.
Clostridium difficile infection of the intestinal epithelium and consequent pseudomembranous colitis is an important cause of morbidity and mortality. Pathogenesis has been ascribed exclusively to toxin production. Using in vitro models of human intestinal epithelial layers, we show that exposure to toxigenic C. difficile upregulates epithelial expression of IL-8 and ICAM-1, two molecules important in neutrophil chemoattraction and adhesion and subsequent inflammation. IL-8 production was also stimulated by toxin-containing supernatants. C difficile induced IL-8 release was inhibited by specific antiserum. Increased ICAM-1 expression only occurred after basolateral exposure to C. difficile while apical exposure had no effect on ICAM-1 expression. However, transepithelial electrical resistance was impaired by apical exposure to bacterial suspensions. We suggest that apical exposure to C. difficile induces changes in epithelial layer integrity which allows the bacteria and/or the toxin access to the basolateral compartment where pathogenic inflammatory mechanisms are activated.  相似文献   

5.
McVey DC  Vigna SR 《Peptides》2001,22(9):1439-1446
The mechanism by which Clostridium difficile toxin A causes substance P (SP) release and subsequent inflammation in the rat ileum is unknown. Pretreatment with the vanilloid receptor subtype 1 (VR1) antagonist, capsazepine, before toxin A administration significantly inhibited toxin A-induced SP release and intestinal inflammation. Intraluminal administration of the VR1 agonist capsaicin caused intestinal inflammation similar to the effects of toxin A. Pretreatment with capsazepine before capsaicin administration also significantly inhibited capsaicin-induced intestinal inflammation. These results suggest that intraluminal toxin A causes SP release from primary sensory neurons via stimulation of VR1 receptors resulting in intestinal inflammation.  相似文献   

6.
Saccharomyces boulardii (Sb), a probiotic yeast, protects against intestinal injury and inflammation caused by a wide variety of enteric pathogens, including Clostridium difficile. Given the broad range of protective effects of Sb in multiple gastrointestinal disorders, we hypothesize that Sb modulates host signaling pathways involved in intestinal inflammatory responses. In this study, we found that Sb culture supernatant (SbS) inhibits interleukin-8 production induced by C. difficile toxin A or IL-1beta in human colonocyte NCM460 cells in a dose-dependent fashion. Furthermore, SbS inhibited IL-1beta and toxin A induced Erk1/2 and JNK/SAPK but not p38 activation in NCM460 cells. To test whether this inhibition also occurs in vivo, we used a previously established mouse ileal loop model. On its own, SbS had no significant effect on basal fluid secretion or intestinal histology. However, Erk1/2 activation was significantly inhibited by SbS in toxin A exposed mouse ileal mucosa. In control loops, toxin A increased fluid secretion (2.2-fold), histological score (3.3-fold), and levels of the chemokine KC (4.5-fold). SbS pretreatment completely normalized toxin A mediated fluid secretion (p < 0.01), and histopathologic changes (p < 0.01) and substantially inhibited toxin A-associated KC increases (p < 0.001). In summary, the probiotic yeast S. boulardii inhibits C. difficile toxin A-associated enteritis by blocking the activation of Erk1/2 MAP kinases. This study indicates a new mechanism whereby Sb protects against intestinal inflammation and supports the hypothesis that Sb modulates host inflammatory signaling pathways to exert its beneficial effects.  相似文献   

7.
The injection of Clostridium difficile toxin A into the ileal loops caused fluid accumulation with the destruction of intestinal epithelial structure and the recruitment of neutrophils and macrophages. Concomitantly, intraileal gene expression of CX3CL1/fractalkine (FKN) and its receptor, CX3CR1, was enhanced. When treated with toxin A in a similar manner, CX3CR1-deficient (CX3CR1(-/-)) mice exhibited exaggerated fluid accumulation, histopathological alterations, and neutrophil recruitment, but not macrophage infiltration. Mice reconstituted with CX3CR1(-/-) mouse-derived bone marrow cells exhibited exacerbated toxin A-induced enteritis, indicating that the lack of the CX3CR1 gene for hematopoietic cells aggravated toxin A-induced enteritis. A heme oxygenase-1 (HO-1) inhibitor, tin-protoporphyrin-IX, markedly increased fluid accumulation in toxin A-treated wild-type mice, indicating the protective roles of HO-1 in this situation. HO-1 expression was detected mainly in F4/80-positive cells expressing CX3CR1, and CX3CR1(-/-) mice failed to increase HO-1 expression after toxin A treatment. Moreover, CX3CL1/FKN induced HO-1 gene expression by isolated lamina propria-derived macrophages or a mouse macrophage cell line, RAW264.7, through the activation of the ERK signal pathway. Thus, CX3CL1/FKN could induce CX3CR1-expressing macrophages to express HO-1, thereby ameliorating toxin A-induced enteritis.  相似文献   

8.
Clostridium difficile toxin A increases paracellular permeability in colonic epithelial T84 cells by mechanisms involving RhoA glucosylation and actin depolymerization. However, we previously observed that toxin A-mediated decline in transepithelial electrical resistance preceded changes in cell morphology and tight junction ultrastructure (Hecht, G., Pothoulakis, C., LaMont, J. T., and Madara, J. L. (1988) J. Clin. Invest. 82, 1516-1524). Recent studies also showed that C. difficile toxins induce early cellular responses, including activation of mitogen-activated protein kinases, generation of reactive oxygen metabolites, and calcium influx. The aim of this study was to investigate whether toxin A-induced early cellular responses contribute to the permeability changes. We found that toxin A stimulated the activities of membrane and cytosolic protein kinase Calpha (PKCalpha) and cytosolic PKCbeta. A specific PKCalpha/beta antagonist (myristoylated PKCalpha/beta peptide) blocked toxin A-mediated RhoA glucosylation. Furthermore, decreased transepithelial electrical resistance and increased translocation of ZO-1 from tight junction occurred within 2-3 h of toxin A exposure and were also inhibited by PKCalpha/beta antagonist. During this time period, toxin exposure did not induce translocation of ZO-2, dephosphorylation or translocation of occludin, or cell rounding. Our data indicate that PKC signaling regulates toxin A-mediated paracellular permeability changes and ZO-1 translocation.  相似文献   

9.
Phospholipase C-γl (PLC-γl) expression is associated with cellular transformation. Notably, PLC-gamma is up-regulated in colorectal cancer tissue and breast carcinoma. Because exotoxins released by Clostridium botulinum have been shown to induce apoptosis and promote growth arrest in various cancer cell lines, we examined here the potential of Clostridium difficile toxin A to selectively induce apoptosis in cells transformed by PLC-γl overexpression. We found that PLC-γl-transformed cells, but not vectortransformed (control) cells, were highly sensitive to C. difficile toxin A-induced apoptosis and mitotic inhibition. Moreover, expression of the proapoptotic Bcl2 family member, Bim, and activation of caspase-3 were significantly up-regulated by toxin A in PLC-γl-transformed cells. Toxin A-induced cell rounding and paxillin dephosphorylation were also significantly higher in PLC-γl-transformed cells than in control cells. These findings suggest that C. difficile toxin A may have potential as an anticancer agent against colorectal cancers and breast carcinomas in which PLC-γl is highly up-regulated.  相似文献   

10.
Intestinal epithelial cells are the initial sites of host response to Clostridium difficile infection and can play a role in signaling the influx of inflammatory cells. To further explore this role, the regulated expression and polarized secretion of CXC and CC chemokines by human intestinal epithelial cells were investigated. An expression of the CXC chemokines, including IL-8 and growth-related oncogene (GRO)-alpha, and the CC chemokine monocyte chemoattractant protein (MCP)-1 from HT-29 cells increased in the 1-6 hr following C. difficile toxin A stimulation, assessed by quantitative RT-PCR. In contrast, the expression of neutrophil activating protein-78 (ENA-78) was delayed for 18 hr. The up-regulated mRNA expression of chemokines was paralleled by the increase of protein levels. However, the expression of macrophage inflammatory protein (MIP)-1alpha, RANTES (regulated on activation normal T cells expressed and secreted), and interferon-gamma-inducible protein-10 (IP-10) was not changed in HT-29 or Caco-2 cells stimulated with toxin A. Upon stimulation of the polarized Caco-2 epithelial cells in a transwell chamber with toxin A, CXC and CC chemokines were released predominantly into the basolateral compartment. Moreover, the addition of IFN-gamma and TNF-alpha to toxin A stimulated Caco-2 cells increased the basolateral release of CC chemokine MCP-1. In contrast, IFN-gamma and TNF-alpha had no effect on the expression of the CXC chemokines IL-8 and GRO-alpha. These results suggest that a CXC and CC chemokine expression from epithelial cells infected with C. difficile may be an important factor in the mucosal inflammatory response.  相似文献   

11.
Clostridium difficile inoculated BALB/c mice were investigated to assess the comparative role of antibiotic and proton pump inhibitor. They were examined for colonization and toxin production by C. difficile as well as myeloperoxidase activity and histopathological changes in the intestinal tract. The C. difficile count, toxin A and B titres and myeloperoxidase activity were significantly higher (P>0.05) in ampicillin and lansoprazole receiving groups as compared to the control and the C. difficile receiving groups. Similarly they showed significant difference (P >0.05) for epithelial damage, oedema and neutrophilic infiltrate in colons. In addition to antibiotic, PPI also acts as an independent risk factor for C. difficile infection in experimental studies.  相似文献   

12.
本文应用悉生小鼠做模型,研究了大肠杆菌(E.coli)和青春型双歧杆菌(Bifidobacterium adolescentis)对艰难梭菌(Clostridium diffi-cile)的拮抗作用。E.coli和B.adolescentis预先接种无菌SSB小鼠,再用C.difficile攻击。结果表明,E.coli和E.coli B.adolescentis对小鼠均有保护作用,保护平分别为87.5%(7/8)和100%(8/8)。B.adolescentis定值后数量达10~(10.28)CFU/g,且对E.coli数量和小鼠本身无影响。E.coli和B.adolescentis联合比E.coli单独抑制C.difficile在肠道中繁殖的作用更强(0.02>P>0.01),但对其毒素产生和粘附力的作用无明显差异。C.difficile攻击后的1~14天,小鼠粪便中C.difficile菌数在10~4至10~8CFU/g内变化,细胞毒素为10~3CFU/g,A毒素滴度为10~2/g,B.adolescentis也一度下降10~2CFU/g。接种C.difficile后,小鼠虽无明显的腹泻症状,但组织学仍可观察到肠粘膜有充血和分泌增加等轻度损害。扫描电镜和普通光镜均发现E.coli单独或与B.adolescentis共同吸附在肠粘膜微绒毛表面,未见有C.difficile吸附。  相似文献   

13.
Clostridium difficile toxin A is known to cause actin disaggregation through the enzymatic inactivation of intracellular Rho proteins. Based on the rapid and severe cell rounding of toxin A-exposed cells, we speculated that toxin A may be involved in post-translational modification of tubulin, leading to microtubule instability. In the current study, we observed that toxin A strongly reduced α-tubulin acetylation in human colonocytes and mouse intestine. Fractionation analysis demonstrated that toxin A-induced α-tubulin deacetylation yielded monomeric tubulin, indicating the presence of microtubule depolymerization. Inhibition of the glucosyltransferase activity against Rho proteins of toxin A by UDP-2′,3′-dialdehyde significantly abrogated toxin A-induced α-tubulin deacetylation. In colonocytes treated with trichostatin A (TSA), an inhibitor of the HDAC6 tubulin deacetylase, toxin A-induced α-tubulin deacetylation and loss of tight junction were completely blocked. Administration of TSA also attenuated proinflammatory cytokine production, mucosal damage, and epithelial cell apoptosis in mouse intestine exposed to toxin A. These results suggest that toxin A causes microtubule depolymerization by activation of HDAC6-mediated tubulin deacetylation. Indeed, blockage of HDAC6 by TSA markedly attenuates α-tubulin deacetylation, proinflammatory cytokine production, and mucosal damage in a toxin A-induced mouse enteritis model. Tubulin deacetylation is an important component of the intestinal inflammatory cascade following toxin A-mediated Rho inactivation in vitro and in vivo.  相似文献   

14.
15.
The ability of Saccharomyces boulardii to protect mice against intestinal pathology caused by toxinogenic Clostridium difficile was studied. Different regions of the intestine of experimental mice were prepared for observation by scanning electron microscopy or homogenized for C. difficile enumeration and quantification of toxin A by enzyme immunoassay and toxin B by cytotoxicity. The test group was treated for 6 d with an S. boulardii suspension in drinking water and challenged with C. difficule on day 4. The three control groups were: axenic mice, mice treated with only S. boulardii and mice only challenged with C. difficile. The results showed that: (i) 70% of the mice infected by C. difficile survived when treated with S. boulardii; (ii) the C. difficile-induced lesions on the small and large intestinal mucosa were absent or markedly less severe in S. boulardii-treated mice; and (iii) there was no decrease in the number of C. difficile but rather a reduction in the amount of toxins A and B in S. boulardii-treated mice.  相似文献   

16.
The two exotoxins A and B produced by Clostridium difficile are responsible for antibiotic-associated enterocolitis in human and animals. When added apically to human colonic carcinoma-derived T84 cell monolayers, toxin A, but not toxin B, abolished the transepithelial electrical resistance and altered the morphological integrity. Apical addition of suboptimal concentration of toxin A made the cell monolayer sensitive to toxin B. Both toxins induced drastic and rapid epithelial alterations when applied basolaterally with a complete disorganization of tight junctions and vacuolization of the cells. Toxin A-specific IgG2a from hybridoma PCG-4 added apically with toxin A alone or in combination with toxin B abolished the toxin-induced epithelial alterations for up to 8 h. The Ab neutralized basolateral toxin A for 4 h, but not the mixture of the two toxins. Using an identical Ab:Ag ratio, we found that recombinant polymeric IgA (IgAd/p) with the same Fv fragments extended protection against toxin A for at least 24 h in both compartments. In contrast, the recombinant monomeric IgA counterpart behaved as the PCG-4 IgG2a Ab. The direct comparison between different Ig isotype and molecular forms, but of unique specificity, demonstrates that IgAd/p Ab is more efficient in neutralizing toxin A than monomeric IgG and IgA. We conclude that immune protection against C. difficile toxins requires toxin A-specific secretory Abs in the intestinal lumen and IgAd/p specific for both toxins in the lamina propria.  相似文献   

17.
Clostridium difficile toxin A induces acute colitis with neutrophil infiltration and up-regulation of numerous pro-inflammatory mediators, but the contribution of cyclooxygenase-2 (COX-2) induction in this infection is unknown. We report here that toxin A induces expression of COX-2 and secretion of prostaglandin E2 (PGE2) in a dose- and time-dependent manner in cultured NCM460 human colonocytes and in human intestinal xenografts. This induction was blocked by SB203580, a p38 MAPK inhibitor, which also decreased the phosphorylation of MSK-1, CREB/ATF-1, and COX-2 promoter activity following toxin A stimulation. Gel shift assays indicated that CREB/ATF-1 was the major proteins binding to the COX-2-CRE. Moreover, colonocytes exposed to toxin A produced reactive oxygen species (ROS), which activated p38 MAPK, MSK-1, and CREB/ATF-1, leading to subsequent COX-2 induction and PGE2 secretion. In intact mice, blockage of p38 MAPK inhibited toxin A-mediated induction of COX-2 in enterocytes as well as lamina propria cells, and significantly blocked the toxin A-induced ileal secretion of fluid and PGE2. Furthermore, a selective COX-2 inhibitor also diminished toxin A-associated ileal fluid and PGE2 secretion. The main signaling pathway for toxin A induction of human COX-2 involves ROS-mediated activation of p38 MAPK, MSK-1, CREB, and ATF-1. Toxin A triggers ileal inflammation and secretion of fluid via COX-2 induction and release of PGE2.  相似文献   

18.
酪酸梭菌对艰难梭菌感染的防治研究   总被引:2,自引:1,他引:1  
目的:观察酪酸梭菌对艰难梭菌感染的防治效果.方法:用艰难梭菌产毒株人工感染BALB/C小鼠,感染前后分别用酪酸梭菌进行预防与治疗,并检测盲肠内容物细胞毒性和进行肠黏膜病理观察.结果:酪酸梭菌不能预防艰难梭菌的感染,但在艰难梭菌感染后则能明显降低艰难梭菌的产毒力和盲肠黏膜的病理损伤.结论:酪酸梭菌对小鼠艰难梭菌感染有明显的治疗作用.  相似文献   

19.
To longitudinally assess fecal shedding and animal-to-animal transmission of Clostridium difficile among finishing feedlot cattle as a risk for beef carcass contamination, we tested 186 ± 12 steers (mean ± standard deviation; 1,369 samples) in an experimental feedlot facility during the finishing period and at harvest. Clostridium difficile was isolated from 12.9% of steers on arrival (24/186; 0 to 33% among five suppliers). Shedding decreased to undetectable levels a week later (0%; P < 0.001), and remained low (< 3.6%) until immediately prior to shipment for harvest (1.2%). Antimicrobial use did not increase fecal shedding, despite treatment of 53% of animals for signs of respiratory disease. Animals shedding C. difficile on arrival, however, had 4.6 times higher odds of receiving antimicrobials for respiratory signs than nonshedders (95% confidence interval for the odds ratio, 1.4 to 14.8; P = 0.01). Neither the toxin genes nor toxin A or B was detected in most (39/42) isolates based on two complementary multiplex PCRs and enzyme-linked immunosorbent assay testing, respectively. Two linezolid- and clindamycin-resistant PCR ribotype 078 (tcdA+/tcdB+/cdtB+/39-bp-type deletion in tcdC) isolates were identified from two steers (at arrival and week 20), but these ribotypes did not become endemic. The other toxigenic isolate (tcdA+/tcdB+/cdtB+/classic tcdC; PCR ribotype 078-like) was identified in the cecum of one steer at harvest. Spatio-temporal analysis indicated transient shedding with no evidence of animal-to-animal transmission. The association between C. difficile shedding upon arrival and the subsequent need for antimicrobials for respiratory disease might indicate common predisposing factors. The isolation of toxigenic C. difficile from bovine intestines at harvest highlights the potential for food contamination in meat processing plants.  相似文献   

20.
Clostridium difficile toxin A causes severe intestinal inflammation and fluid secretion in rabbit ileum and is chemotactic for neutrophils in vitro. The mechanism of intestinal injury produced by toxin A appears to involve direct epithelial cell damage as well as recruitment of an inflammatory cell response. The current study was undertaken to determine if toxin A can directly stimulate a proliferative response in lymphocytes. Highly purified toxin A, in the presence of the calcium ionophore, ionomycin, stimulated substantial [3H]thymidine incorporation by murine splenic lymphocytes, which was maximal at 10(-9) M toxin A and 800 ng/ml ionomycin. Removal of T cells with anti-Thy-1.2 antibody plus complement had no effect on the proliferative response induced by toxin A. However, [3H]thymidine incorporation in response to toxin A was significantly inhibited (P less than 0.001) by the removal of macrophages from splenocyte suspensions and was restored by the addition of peritoneal macrophages or cell-free supernatant from toxin A-treated macrophage cultures. Analysis of the toxin A-treated macrophage supernatants showed high levels of IL-1, but not IL-2 or IL-4. The combination of recombinant IL-1 plus ionomycin was found to stimulate [3H]thymidine incorporation by T cell-depleted splenic lymphocytes. These results suggest that toxin A stimulates the release of IL-1, and possibly other factors, from macrophages which can costimulate murine B lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号