首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
神经丝是神经细胞所特有的中间纤维 ,由NF L ,NF M和NF H 3种蛋白组成 .NF L能在细胞内自组装 ,NF M则无自组装能力 .构建了两种杂合体分子ML和MML .ML由NF M的头部和NF L的其他部分组成 ,MML由NF M的头部加第 1段杆状区和NF L的第 2段杆状区加尾部组成 .将 2种杂合分子的cDNA转入缺乏内源性中间纤维的Sf9细胞中进行表达 .结果表明 ,ML能在细胞内组装出纤维形态 ,并可与NF M共同组装成平行的纤维束 ,MML无法形成纤维结构 ,说明NF M的第 1段杆状区是影响神经丝组装的结构域 .  相似文献   

2.
利用超速离心和离子交换层析技术,从牛脊髓中分离纯化了神经丝蛋白三组分:NF-L,NF-M和NF-H。应用电镜负染色和金属投影方法研究神经丝的形态结构与NF-L的体外组装,结果表明:神经丝由10nm的核心纤维与外周的丝状突起组成;在近似生理条件下,NF-L可在60min内组装成10nm纤维,纤维由4根亚丝缠绕而成;在碱性缓冲液中,NaCl能促进NF-L装配成短纤维,这种10nm的短纤维无法连接成长纤维。  相似文献   

3.
利用差速离心法从牛脊髓中分离神经丝 ,在电镜下观察了其形态 ;应用扫描隧道显微镜 (STM)研究了它的结构 ,发现神经丝具有长短 2种侧臂 ,二者相间排列 ,相邻长侧臂或相邻短侧臂的间距都是 2 0~ 2 2nm ;由此推测神经丝内部存在 3 /4分子交错 ;还研究了神经丝蛋白的体外组装 ,以胶体金标记的方法证明 ,中等分子量与高分子量的神经丝蛋白 ,都能同低分子量的神经丝蛋白共同装配成 10nm的纤维 ;同时发现 ,中等分子量与高分子量的神经丝蛋白能够组装成一种较细的纤维 ,不同于中间纤维 .  相似文献   

4.
目的:应用重组杆状病毒表达系统制备由HA、NA、M1和M2蛋白组成的H5N1高致病性禽流感病毒样颗粒,为研究H5N1高致病性禽流感疫苗奠定基础。方法:构建能共表达A/chicken/Jilin/2003(H5N1)禽流感病毒血凝素(HA)和神经氨酸酶(NA)、A/PR/8/34(H1N1)流感病毒基质蛋白(M1)和离子通道蛋白(M2)的2个二元重组杆状病毒,共同感染HighFive细胞,同时表达HA、NA、M1和M2蛋白,使这4种蛋白在感染的细胞内自主组装成病毒样颗粒。经差速离心和蔗糖密度梯度超速离心收获病毒样颗粒,通过Western印迹鉴定病毒样颗粒的组成,透射电镜观察病毒样颗粒形态,血凝试验测定病毒样颗粒的活性。结果:HA、NA、M1、M2蛋白在昆虫细胞中共表达,并组装成病毒样颗粒;电镜观察到病毒样颗粒的形态与流感病毒一致,直径约80 nm;血凝试验显示该病毒样颗粒具有凝集鸡红细胞的活性。结论:应用该方法可以制备流感病毒样颗粒,为H5N1流感疫苗研究提供了可行方案。  相似文献   

5.
Tau蛋白基因突变与神经退行性疾病   总被引:2,自引:0,他引:2  
王建枝 《生命的化学》1999,19(6):288-290
Tau蛋白是神经细胞中含量最高的微管相关蛋白,其正常功能是促进微管蛋白(tubulin)组装成微管(microtubule),并维持已形成微管的稳定性。Tau蛋白的翻译后异常修饰与阿尔茨海默病(Alzheimerdisease,AD)的神经原纤维退化有关[1]。本文综述最近有关Tau蛋白基因突变,TaumRNA剪接改变导致Tau蛋白组成、结构和功能异常的机制,及其与几种神经退行性疾病的关系的研究。1.Tau蛋白基因结构及其表达产物Tau蛋白基因位于17号染色体(17p21.11),由17个外显子…  相似文献   

6.
细胞骨架是细胞内的蛋白纤维网状结构,包括人们熟知的微管、微丝和中间纤维.目前研究表明分隔丝(septin filaments)是一类在真核生物中广泛分布的蛋白纤维,逐渐被认为是一种新型细胞骨架结构.分隔丝由可结合GTP的分隔丝蛋白单体(Septin)聚合形成异源复合体,进一步组装成纤维丝.分隔丝可形成纤维束,环状或笼状等结构,并与细胞膜或其他细胞骨架成分发生相互作用.在细胞内,分隔丝参与胞质分裂、细胞迁移、神经元发育和免疫等重要生理及病理过程.分隔丝结构或功能的异常与多种人类疾病如肿瘤等密切相关.本文将从分隔丝的结构、组装调控、功能及与人类疾病的关系等方面综述近年的研究进展.  相似文献   

7.
鲁宁  黄秉仁 《生命的化学》2001,21(5):386-389
细胞骨架由微丝、微管及中等纤维组成受不同蛋白因子调控以不同方式组装成不同直径的纤维 ,遍布于一切细胞 ,决定细胞的形状 ,赋予其抗压强度 ,对细胞器及大分子进行空间组织 ,实现胞内的能量转换。在肌动蛋白 (actin)组装成张力纤维和张力纤维解离成肌动蛋白单体过程中有多种蛋白因子参与调控 ,从而使细胞骨架处于一个生理的动态平衡中 ,执行和完成不同的生化反应。在众多的调控蛋白中 ,肌动蛋白集束调控蛋白因子 (actinbundlingprotein)不仅参与肌动蛋白结构调节 ,还与细胞内信号传导有密切关系。已发现的肌动蛋…  相似文献   

8.
从头到脚,我们的身体是由富含称为中间纤维(IF)的胞内纤维蛋白的细胞组成的。免疫学和生物化学的证据表明在各种组织中组成IF的蛋白有五种:上皮内30种左右、分子量40—70 kd的角蛋白复杂群;肌肉內单一的52kd的结蛋白(desmin);间充质起源的细胞内单一的53kd的波形蛋白(vimentin),星形胶质细胞内单一的50kd的胶质纤维酸性蛋白(GFAP)和神经细胞内神经纤维蛋白三联体:NF-L(约65  相似文献   

9.
植物角蛋白中间纤维在体外的装配特性   总被引:2,自引:0,他引:2  
经选择性抽提与纯化的植物角蛋白在体外进行重组装 ,扫描隧道显微镜及负染电镜显示 ,酸性角蛋白和碱性角蛋白在体外能自组装成 10nm中间纤维 .在装配的初期阶段 ,可观察到角蛋白二聚体 ,在二聚体中部有非螺旋的连接肽链 ,它是二聚体进一步装配的基础 .对完整 10nm纤维的观察可发现 ,每根 10nm纤维是由多根直径为 3nm的纤维组成 ,这反映了中间纤维组装过程中所形成的原丝等中间结构状态 .在 10nm纤维及原丝的纵向都存在 2 3~ 2 5nm的重复周期 ,这一周期是所有中间纤维的典型特性 ,它说明了角蛋白分子在组装过程中发生了半分子交错 .  相似文献   

10.
蛛丝是由高度特化的上皮细胞分泌的多聚蛋白纤维组成的,这些多聚蛋白质纤维又是由存在着高度重复序列的水溶性的蛋白单体聚合而成的,蛛网牵引丝的强度,韧性和模系数都可与人工合成的高性能的纤维相媲美,故称生物钢,已经在哺乳动物细胞中获得表达的有60,110和140kD等几种不同分子量的重组蛛丝蛋白,而且表达的这些重组蛋白质都是分泌性的,利用表达的这些重组蛋白质经过抽丝和牵拉等工艺之后获得的人造蛛丝具备了天然蛛丝的各项机械性能,作为一种新兴的生物材料,具有巨大的开发应用前景。  相似文献   

11.
Li R  Guo JC  Cheng JS 《生理学报》2002,54(4):321-324
采用暂时性脑缺血再灌注大鼠模型,及H&E、TUNEL细胞染色等实验技术,观察电针或碱性成纤维生长因子,以及两者合用对缺血性神经细胞死亡的影响。实验结果表明,电针与碱性成纤维生长因子合用与单纯使用电针或碱性成纤维生长因子相比,可明显减少暂时性脑缺血再灌注后神经细胞坏死和凋亡。提示碱性成纤维生长因子与电针可具有互补或加强的神经保护作用。两者合用具有一定的临床实际价值。  相似文献   

12.
本文探讨在外源性层粘连蛋白与抗癌药物顺铂的共同作用下,癌细胞内微丝组装的变化。结果发现外源性层粘连蛋白与小鼠腹水型肝癌细胞膜受体结合后,促进肌动蛋白微丝组装,使其含量增加;而多靶性抗癌药物顺铂与肌动蛋白微丝的结合,抑制微丝组装过程,造成微丝含量减少;两种试剂共同作用于癌细胞时,肌动蛋白微丝的含量与对照组相比非常接近。本研究为上述两种物质对癌细胞内微丝组装的拮抗性作用提出直接证据。  相似文献   

13.
细胞骨架是由微丝、微管及中间纤维组成的蛋白质纤维网络体系.三种骨架纤维具有不同的形态、结构和功能特征,它们在细胞中彼此联系、互相依赖,共同构成完整的细胞骨架系统,在细胞的各项生命活动中起着重要的作用.认识与研究细胞骨架的这三种纤维之间存在的相互联系,揭示它们作用的分子机制,对全面、科学的认识细胞骨架系统在细胞中起所的作用以及对于科学研究都有着重要的意义.  相似文献   

14.
中间纤维(intermediate filament,IF)与微管、微丝一起组成细胞骨架的蛋白质纤维网络体系。三种骨架纤维中最复杂的是IF,它由最大的基因家族所编码,组成了一个包含73个成员的蛋白大家族。IF除了支架作用还形成复杂的信息平台,并与各种激酶、受体和凋亡蛋白相互作用。目前,已知80多种人类相关疾病包括皮肤起泡、肌肉萎缩症、心肌病、早衰综合征、神经退行性疾病和白内障等与IF有关,且数量仍在增长。其中,IF的变异至少与30多种人类组织特异性疾病有关,在几种神经退行性疾病、肌肉疾病或其他相关疾病还会出现特征性的包涵体。IF可作为细胞类型的标志,其抗体被广泛应用于病理诊断,因此研究这些疾病与IF之间的相互联系、揭示它们的作用机制对全面认识IF在细胞和组织中所起的作用以及对临床疾病的治疗有着重要意义。  相似文献   

15.
Tau蛋白是神经元中含量最高的微管相关蛋白,其经典生物学功能是促进微管组装和维持微管的稳定性.在阿尔茨海默病(Alzheimer's disease,AD)患者,异常过度磷酸化的Tau蛋白以配对螺旋丝结构形成神经原纤维缠结并在神经元内聚积.大量研究提示,Tau蛋白异常在AD患者神经变性和学习记忆障碍的发生发展中起重要作用.本课题组对Tau蛋白异常磷酸化的机制及其对细胞的影响进行了系列研究,发现Tau蛋白表达和磷酸化具有调节细胞生存命运的新功能,并由此对AD神经细胞变性的本质提出了新见解.本文主要综述作者实验室有关Tau蛋白的部分研究结果.  相似文献   

16.
TuSp1蛋白(tubuliform spidroin 1)是管状腺丝(tubuliform silkfiber)的主要组成成分。管状腺丝作为蛛丝卵袋的外层包卵丝,其结构具有很好的耐腐蚀性和良好的力学性能。目前国内外对大腹园蛛TuSp1蛋白的研究很少,仅有一条基因序列的报道。本课题首次构建含大腹园蛛N端非重复结构域、重复单元以及C端非重复结构域的重组管状腺丝蛋白TuSp1 NT-Rp-CT,并经湿法纺丝获得重组蛋白丝纤维。重组蛋白液圆二色谱分析结果显示,pH由7.0降低到5.5的过程中,始终保持稳定的α-螺旋构象;重组蛋白丝纤维的傅里叶变换红外光谱结果显示,丝纤维中主要二级结构为β-折叠及β-转角;经扫描电镜观察发现,冻干的絮状重组蛋白能自组装成丝纤维,且表面光滑纤细;湿纺后的重组蛋白丝纤维直径较粗,但表面较平整均匀,具有类似天然管状腺丝的形态特征,这些为TuSp1蛋白的成丝机理及仿生纺丝研究提供了理论依据。  相似文献   

17.
波形纤维蛋白与Nup180的体外结合   总被引:3,自引:1,他引:2  
本文作者采用大肠杆菌表达的波形纤维蛋白与大鼠肝细胞分离的核孔蛋白进行体外结合实验,以分析波形纤维与核孔的关系。实验结果显示,细菌表达的波形纤维蛋白在体外能组装成10nm纤维,在体外反应体系中加入核孔蛋白后,室温反应30min,SDS-聚丙烯酰胺凝胶电泳及免疫迷法检测,结果表明180kD核孔蛋白(Nup180)与波形纤维蛋白有亲和反应。结合免疫胶体金标记与电镜负染色方法显示,核孔蛋白结合于体外装与的  相似文献   

18.
本文作者采用大肠杆菌表达的波形纤维蛋白与大鼠肝细胞分离的核孔蛋白进行体外结合实验,以分析波形纤维与核孔的关系。实验结果显示,细菌表达的波形纤维蛋白在体外能组装成10 nm纤维,在体外反应体系中加入核孔蛋白后,室温反应30 min,SDS-聚丙烯酰胺凝胶电泳及免疫印迹法检测,结果表明180 kD核孔蛋白(Nup 180)与波形纤维蛋白有亲和反应。结合免疫胶体金标记与电镜负染色方法显示,核孔蛋白结合于体外装配的10 nm波形纤维上。本文结果提示在细胞内波形纤维可能通过与Nup 180的结合锚定于核孔复合体上。  相似文献   

19.
KPNB1和Ran蛋白共同介导新城疫病毒基质蛋白的入核转运   总被引:2,自引:1,他引:1  
【目的】鉴定与新城疫病毒(Newcastle disease virus,NDV)基质蛋白(matrix protein,M)入核相关的细胞蛋白,以阐明NDV M蛋白细胞核定位的分子机制。【方法】从鸡胚成纤维细胞中分别克隆核转运受体蛋白KPNA1–KPNA6和KPNB1基因,将其构建到真核表达载体,并与表达NDV M蛋白的重组真核表达载体分别共转染HEK-293T细胞,通过免疫共沉淀方法鉴定与NDV M蛋白相互作用的核转运受体蛋白。另外,将M蛋白与Ran蛋白突变体或与M蛋白互作的核转运受体蛋白缺失体分别共表达,通过荧光共定位确定M蛋白入核转运相关的细胞蛋白。【结果】构建的重组真核表达载体在HEK-293T细胞中能够正确表达;通过间接免疫荧光观察发现,重组蛋白中除Myc-KPNA2蛋白定位在细胞质外,其它核转运受体蛋白均与M蛋白表现出相同的细胞核定位。免疫共沉淀试验结果表明,M蛋白与KPNA1蛋白和KPNB1蛋白均存在相互作用。进一步通过荧光共定位观察发现,M蛋白与KPNA1蛋白缺失体(DN-KPNA1)共表达不改变M蛋白的细胞核定位,而与KPNB1蛋白缺失体(DN-KPNB1)共表达后导致M蛋白变为细胞质定位,说明M蛋白入核转运需要KPNB1蛋白的参与。另外,将M蛋白与Ran蛋白突变体Ran-Q69L共表达,荧光观察发现M蛋白同样由细胞核定位变为细胞质定位,说明M蛋白入核转运还需要Ran蛋白的辅助。【结论】KPNB1和Ran蛋白共同介导NDV M蛋白的入核转运,其过程是KPNB1蛋白首先和M蛋白发生相互作用并形成复合物,然后通过Ran蛋白的辅助作用完成入核转运。  相似文献   

20.
急纤虫营养细胞和休眠细胞的中间纤维-核骨架体系   总被引:1,自引:0,他引:1  
利用生化分级抽提、DGD包埋—去包埋透射电镜术和SDS—PAGE凝胶电泳,研究了膜状急纤虫营养细胞和休眠细胞内中间纤维—核骨架体系的分化特征及其蛋白组成。观察到营养细胞中,位于细胞质不同区域的中间纤维形成网状,其网络的密度不同;核骨架中,核纤层位于细胞核周缘,薄层状,厚约50nm;核内骨架由较致密的纤维网络组成。休眠细胞内该结构体系依然存在,但位于细胞内不同层次的纤维网比营养细胞的同种结构要致密得多,这可能与纤毛虫脱分化时细胞大范围的收缩有关;休眠细胞的包囊壁中层壁存在相当于中间纤维的网络结构。SDS—PAGE电泳图谱显示,休眠细胞内该体系的蛋白组成发生了较明显的变化,其中保留了营养细胞的部分蛋白条带,丢失了部分条带,同时还产生了一些特异性条带。分析表明,膜状急纤虫的中间纤维—核骨架体系是细胞在营养条件下和休眠状态下都稳定存在的结构;而纤毛虫形成休眠细胞后中间纤维—核骨架体系及蛋白组成上的变化提示,细胞在休眠状态下,基因的表达水平与营养细胞是不同的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号