首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The absolute activities of sucrose-UDP glucosyltransferase, glucose-6-phosphate ketoisomerase and soluble and bound ADPG-starch glucosyltransferase have been studied in normal and Opaque-2 maize endosperms during development. In general, the activities of these enzymes except sucrose-UDP glucosyltransferase were higher up to 20 days post-pollination and lower at the 30 day stage in Opaque-2 than in normal maize endosperms. However, sucrose-UDP glucosyltransferase activity was higher in normal maize endosperm up to the 20 day stage while it was lower at subsequent stages than in Opaque-2. It is suggested that the lower level of these enzymes, except sucrose-UDP glucosyltransferase, might be responsible for the reduced accumulation of starch in Opaque-2 endosperm during later stages of endosperm development.  相似文献   

2.
以38个QPM(或02)和对照普通玉米为实验材料,进行02基因控制赖氨酸超量积累的生化和遗传分析。主要实验结果如下:(1)QPM玉米02基因为隐性的单基因遗传,它控制着胚乳、雄穗和幼苗期叶片中赖氨酸的超量积累,一些修饰因子和遗传背景对胚乳物理性状产生影响;(2)QPM玉米、普通玉米的胚较之胚乳,或者QPM玉米胚乳较之普通玉米胚乳都含有较多的天门冬氮酸、甘氨酸、赖氨酸和精氨酸,含有较少的脯氨酸、谷氨酸、亮氨酸和苯丙氨酸;(3)两种玉米之间,在胚乳蛋白质含量及胚乳可溶性蛋白、醇溶蛋白、谷蛋白的赖氨酸含量方面没有什么不同;(4)已经育成一批QPM或02玉米自交系,并配制出几个强优势杂交组合。  相似文献   

3.
W.J. da Silva  P. Arruda 《Phytochemistry》1979,18(11):1803-1805
A split pollination was used to produce normal (Su su su O2 o2 o2) and high lysine double mutant sugary opaque-2 (su su su o2 o2 o2) endosperms on the same ear of sugary opaque-2 maize plants. Amino acids were determined in the vascular sap of the ear peduncle. Lysine content in the sap was compared with lysine stored in both normal and sugary opaque-2 endosperm during kernel filling. Lysine content in the ear peduncle sap could account for all lysine found in both endosperms. Preformed lysine is highly catabolized in the normal endosperm, but not in the high lysine sugary opaque-2 endosperm. The rate of lysine breakdown appears to be an important mechanism by which the high lysine mutant controls lysine level in maize endosperm.  相似文献   

4.
Polysome preparations obtained from opaque-2 and normal maize endosperms during development did not show any significant difference in sedimentation coefficient or nucleotide composition. The pattern of incorporation in vitro of lysine and leucine, however, differed quite distinctly in these two preparations. During early stages of maturity the polysomes from opaque-2 incorporated substantially more lysine and less leucine as compared with those from normal maize. Although the trend was reversed at 25 days post-pollination, this did not result in any significant zein accumulation since very little total protein was synthesized after that stage in opaque-2 maize endosperm. It is, therefore, suggested that the opaque-2 gene exerts a regulatory control on mRNA synthesis, required for zein formation at early stages of maturation.  相似文献   

5.
The Hydrolysis of Endosperm Protein in Zea mays   总被引:14,自引:10,他引:4       下载免费PDF全文
Harvey BM  Oaks A 《Plant physiology》1974,53(3):453-457
Degradation of the major storage proteins in maize endosperm, zein and glutelin, begins during the 2nd day of germination. The protein most abundant in the mature endosperm is degraded most rapidly. The patterns of protein loss are essentially similar in germinating seeds and excised endosperms. Cycloheximide, added at the beginning of the incubation period, prevents the development of α-amylase and protease activities and the disappearance of starch and protein reserves. Late additions (70 hours) of cycloheximide still inhibit the increase in hydrolase activity but have no effect on the hydrolysis of storage reserves. The results indicate that the hydrolytic enzymes are synthesized de novo in the maize endosperm.  相似文献   

6.
Nuclear or cell number, and the mitotic index, were recordedin endosperms of Triticum aestivum cv. Mardler to test if aparticular stage of endosperm development was critical in determiningthe final grain weight. The basal four florets of emasculatedspikelets (controls), and the third and fourth florets of spikeletswhere the two basal ovaries were removed (ovary-removed), weresampled at various times up to 360 h after hand-pollination.The coenocytic phase in endosperms ended about 84 h after pollinationregardless of both grain position and the treatment. The onsetof the cellular stage was characterized by the final large fluctuationsin the mitotic index reflecting the culmination of the synchronousnuclear division of the coenocytic stage. Thereafter, the mitoticindex fluctuated with smaller amplitudes and, by 216 h afterpollination, was < 1%. Neither floret position in the spikeletnor the treatment affected the pattern of alteration to themitotic index. However, ovary removal from first and secondflorets resulted in significantly heavier grains and higherendosperm cell number in the 3rd and 4th florets compared withthe controls. In all florets, mean endosperm cell number peakedat 280 h but decreased by 360 h after pollination. At this time,the mean cell numbers in endosperms of the 3rd and 4th floretsof ovary-removed spikelets were significantly higher than inthe corresponding endosperms in the controls. Thus, a key contributoryfactor in determining the final endosperm cell number may bethe number of cells which are lost during the late period ofthe cellular stage of endosperm development. Key words: Endosperm cell number, florets, grain weight, mitotic index, Triticum aestivum  相似文献   

7.
8.
The intracellular location of ADPglucose pyrophosphorylase (AGPase) in wheat during endosperm development was investigated by analysis of the recovery of marker enzymes from amyloplast preparations. Amyloplast preparations contained 20-28% of the total endosperm activity of two plastidial marker enzymes and less than 0.8% of the total endosperm activity of two cytosolic marker enzymes. Amylo plasts prepared at various stages of development, from 8-30 d post anthesis, contained between 2% and 10% of the total AGPase activity; this implies that between 7% and 40% of the AGPase in wheat endosperm is plastidial during this period of development. Two proteins were recognized by antibodies to both the large and small subunits of wheat AGPase. The larger of the two AGPases was the major form of the enzyme in whole cell extracts, and the smaller, less abundant, form of AGPase was enriched in plastid preparations. The results are consistent with data from other graminaceous endosperms, suggesting that there are distinct plastidial and cytosolic isoforms of AGPase composed of different subunits. The plastidial isoform of AGPase from wheat endosperm is relatively insensitive to the allosteric regulators 3-phosphoglycerate and inorganic orthophos phate compared with plastidial AGPase from other species. Amyloplast AGPase showed no sensitivity to physiological concentrations of inorganic orthophosphate. 15 mM 3-phosphoglycerate caused no stimulation of the pyrophosphorolytic reaction, and only 2-fold stimulation of the ADPglucose synthesizing reaction.  相似文献   

9.
The cereal endosperm is a storage organ consisting of the central starchy endosperm surrounded by the aleurone layer. In barley, endosperm development is subdivisible into four main stages, i.e. the syncytial (I), the cellularization (II), the differentiation (III) and the maturation stage (IV). During stage I, a multinucleate syncytium is formed, which in stage II develops into the undifferentiated cellular endosperm. During stage III the cells of the endosperm differentiate into two types of aleurone cells (peripheral and modified) and three different starchy endosperm cell types (irregular, prismatic and subaleurone). To elucidate the ontogenetic relationship between the endosperm tissues, the phenotypes of sex (shrunken endosperm mutants expressing xenia) mutant endosperms were studied. These mutants can be classified into two groups, i.e. those in which development is arrested at one of the four wild-type stages described above, and those with abnormal development with new organizational patterns in the endosperm or with novel cell types. Based on these studies, it is suggested that the two endosperm halves represent cell lines derived from the two daughter nuclei of the primary endosperm nucleus, and that the prismatic starchy endosperm cells arise from a peripheral endosperm meristematic activity during stage III. Finally, a model for the main molecular events underlying the morphogenetic processes is discussed.  相似文献   

10.
Autonomous endosperm was found in unfertilized ovules of V. odorata L. cultured on MS medium supplemented with 2,4-D as a sole growth regulator or on media with 2,4-D and BAP or kinetin. Frequency of endosperm induction was approximately 9% in ovules analyzed. The induction rate depended mainly on genotype of the donor plant, and to lesser degrees, on floral stage, flower series and medium type. Multinuclear endosperms consisting of 10–37 nuclei were found in ovules after as few as 4 days of culture. In some ovules at this stage, the egg cell and two polar nuclei were present. The process of endosperm degeneration began after 3 weeks of culture. In some ovules, degenerating autonomous endosperm was observed up to the 7th week. Parthenogenetic development of egg cells or apogamy did not accompany autonomous endosperm, supporting the hypothesis of independent pathways for embryo and endosperm development. Received: 1 December 1998 / Revision accepted: 6 April 1999  相似文献   

11.
12.
Summary Chromatin structure was studied in nuclei of the endosperm of durum wheat (Triticum durum Desf., cv. Creso), where a large number of cells undergo chromosome endoreduplication during caryopsis development. Optical density profiles of interphase nuclei at different ploidy levels after Feulgen staining were determined cytophotometrically. It was observed that, within each development stage, polyploid nuclei (6–12C and 12–24C) show more condensed chromatin than euploid nuclei (3–6C): this should indicate that endoreduplication is accompanied by some reduction of nuclear activity. Within the same ploidy level, 3–6C and 6–12C nuclei become increasingly condensed with development (except for the last stage), while 12-24C nuclei are identical at all stages. DNA methylation at different stages of caryopsis development was then analyzed in genomic DNA, highly repeated sequences and ribosomal DNA, by digestion with cytosine-methylation-sensitive restriction enzymes. We observed that (i), depending on the enzyme, DNA from caryopses may show higher mean length than DNA from shoot apices and variations occur during endosperm development; (ii) highly repeated DNA sequences also show some variation in base methylation between apices and endosperms and among endosperm development stages, even though to a lesser extent than genomic DNA; (iii) rDNA shows variations only between endosperm and apices while no variation was observed among endosperm development stages in relation to chromosome endoreduplication. Our data may be explained by assuming the occurrence, during endosperm development, of processes of chromatin condensation possibly involved in silencing the activity of extra copies of DNA resulting from chromosome endoreduplication. At least in part, DNA methylation is involved in the process of chromatin condensation. rDNA shows no variation during endosperm development: this suggests that rDNA copies are actively transcribed in both triploid and endoreduplicated nuclei.  相似文献   

13.
Asparaginyl endopeptidase during maturation and germination of durum wheat   总被引:3,自引:0,他引:3  
Asparaginyl-endopeptidase activity was detected in endosperms of maturing and germinating wheat seeds. The highest activity was found during maturation before the maximal accumulation of storage proteins. The enzyme activity then decreased in the dry seeds and increased again during germination. The increase of activity during germination required the presence of the embryo. In fact, the activity found in detached endosperms was lower than that found in attached ones. The localization at tissue level of the enzyme reveals differences between maturation and germination: the enzyme was about equally located in the aleurone layer and starchy endosperm during maturation, but solely in the aleurone layer during germination. The asparaginyl enzymes from maturing and germinating seeds had many similar properties, such as pH optimum, pH stability, thermal stability and sensitivity to thiol reagents and to thiol compounds. The results suggest that asparaginyl endopeptidases may be involved in the modification of proproteins of storage proteins during seed maturation and in the degradation of storage proteins deposited in the aleurone layer during germination.  相似文献   

14.
In most flowering plants, fertilization is necessary for development of the central cell into endosperm, but in the fie-1 mutant of Arabidopsis, the central cell can proliferate autonomously. However, autonomous fie-1 endosperms do not develop completely: They have fewer nuclei than sexually produced endosperms, cellularization does not take place, and no clear distinction is seen between the different endosperm compartments. Here, we show that autonomous endosperm develop much further in hypomethylated than normally methylated fie-1 mutants, undergoing cellularization and regional specification to resemble endosperm in sexually produced wild-type seeds. Therefore, the combination of maternal hypomethylation and loss of FIE function enables formation of differentiated endosperm without fertilization. A maternal fie-1 mutation is also lethal to sexual seeds, even if the pollen donor is wild type. We report that sexual mutant fie-1 endosperms fail to cellularize and overproliferate, consistent with the hypothesis that embryo abortion may be due, at least in part, to a defect in endosperm development. Finally, we show that pollen from hypomethylated plants rescues fie-1 mutant seeds provided that it also donates a wild-type paternal FIE allele. These results are discussed in light of models for parent-of-origin effects on seed development.  相似文献   

15.
Some factors that may be concerned in determining final grain weight in barley ( Hordeum vulgare L. var. distichum ) have been investigated. Variation in endosperm fresh and dry weight, volume and starch content have been recorded at different stages of grain development between anthesis and harvest-ripeness for two barleys, cvs Kym and Golden Promise, differing in final grain weight. Results were recorded under both field and glasshouse conditions. The results suggest that the higher final dry weight of Kym, in comparison with Golden Promise, is a function of both rate and duration of grain filling. Only at later stages of endosperm development did the differences in volume become significant and the Kym endosperms continued to increased rapidly in volume for two to three days after endosperm volume had reached a maximum in Golden Promise. The rates of starch accumulation in both cultivars were very similar but starch deposition continued in Kym endosperms for four to five days after deposition in Golden Promise endosperms had slowed down.  相似文献   

16.
Lysine-ketoglutarate reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses l-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and there-after decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibrium-ordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.  相似文献   

17.
The pattern of the activity of arginine decarboxylase (ADC) and omithine decarboxylase (ODC) involved in polyamine synthesis in ripening wheat seeds was examined. The aim was to study the polyamines and the activity of the two enzymes in correlation with the growth processes occurring in the developing wheat seeds. The results obtained showed a very different pattern of polyamine content in the two organs of caryopsis, and that the two enzymes in the embryos have a higher activity than in the endosperms. Moreover, while in the embryos the ADC exhibits higher activity than the ODC, in the endosperms the activity of ODC is about similar to that of ADC. This pattern is discussed in relation to the different histological characteristics of embryo and endosperm tissues during seed development.  相似文献   

18.
Summary To investigate the mechanisms of seed failure in intraspecific and interspecific crosses of Solanum two diploid, S. commersonii and Group Phureja, and one tetraploid species, S. acaule, species were crossed and the seeds were analyzed for embryo and endosperm development. Many seeds of certain crosses observed seven days after pollinations were found to contain abnormal embryos and degenerating endosperms. In some cases seeds contained an embryo with no endosperm, or an endosperm with no embryo. Other interspecific crosses which were predicted to fail actually produced seeds with normally developed embryos and endosperms. To further characterize the intra- and interspecific embryos and endosperms the nuclear DNA was measured. There are several ways to explain the ploidy levels of embryos and endosperms among the crosses, the occurrence of unreduced gametes in some cases and genomic instability in other cases. The latter resulted in chromosome loss at meiotic and mitotic divisions. Genomic balance in interspecific seeds is critical to both embryo and endosperm development.Scientific Journal Series Article No. 14636 of the Minnesota Experiment Station  相似文献   

19.
水稻淀粉胚乳程序性细胞死亡中的去核化   总被引:6,自引:0,他引:6  
对水稻品种中籼8836淀粉胚乳细胞的去核化发育阶段的细胞超微结构变化和同期籽粒灌浆速率及相关酶活性的动态进行了观察和分析。开花受精后约在第3天胚乳完成细胞化,花后第5天少数淀粉胚乳细胞启动去核发育过程。核消亡是淀粉胚乳细胞程序性细胞死亡(PCD)的第一步。同一籽粒淀粉胚乳细胞的去核进程是不同步的。花后第13天所有淀粉胚乳细胞都已完成去核过程。在去核过程中,胚乳核的形态变化特征既有动植物PCD的共性又有其特殊性。伴随核降解过程,一部分线粒体解体,表明去核化与线粒体解体有一定联系。在去核化发育阶段,与PCD有关的酶类,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性非常高;与淀粉合成有关的酶类,如ADPG焦磷酸化酶、可溶性淀粉合成酶(SSS酶)、淀粉分支酶(或Q酶)也表现出很高的活性。去核化发育阶段籽粒灌浆速率最高,籽粒增重亦最快。淀粉胚乳细胞去核之后,细胞并未立即死亡,这些无核的细胞仍维持正常有序的代谢活动,继续进行淀粉和贮藏蛋白的合成与积累,但上述酶类的活性明显降低,灌浆速率也明显趋缓。淀粉胚乳细胞最终被贮藏物质充满时成为死细胞,完成其程序性死亡过程。Evan‘s blue染色鉴定表明淀粉胚乳细胞死亡不同步,细胞死亡在淀粉胚乳组织中是随机发生的。  相似文献   

20.
Ribulose 1,5-diphosphate carboxylase was detected in extracts of germinating castor bean (Ricinus communis var. Hale) endosperms. This is the first report of this enzyme in a nonphotosynthetic (no chlorophyll) plant tissue. Radioactive 3-phosphoglyceric acid has been identified as the principle product resulting from the enzymatic condensation of 14C-bicarbonate and ribulose-1,5-diP in endosperm extracts. The Km values of bicarbonate and ribulose-1,5-diP for the endosperm carboxylase are 1.14 × 10−2m and 7.5 × 10−5m, respectively. The carboxylase activity peaks at 4 days in endosperms of castor beans germinated in the dark. The specific activity of the carboxylase at this stage of germination is 4.3 μmoles of 3-phosphoglycerate formed/mg protein·hr. The presence of ribulose-1,5-diP carboxylase and other enzymes of the reductive pentose phosphate pathway show the potential of this pathway in castor bean endosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号