首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid composition of the vascular sap of a high lysine maize mutant was determined during kernel development. With the exception of proline and cystine, all amino acids that occur in the endosperm were found in the vascular sap of the ear peduncle. Glutamine is the major amino acid transported to the endosperm varying from 30.6 to 20.6 μmol at 7 and 42 days after pollination, respectively. Aspartic acid, the second most important nitrogen form translocated to the seeds, was ca 10 μmol% during kernel filling. Glutamine and arginine content decreased with maturity, while valine, methionine, isoleucine, leucine, tyrosine and phenylalanine increased with kernel development. The remaining N forms were constant during endosperm growth.  相似文献   

2.
Starch-deficient maize (Zea mays) mutants, brittle-2 (bt2), brittle-1 (bt), and shrunken-2 (sh2), which accumulated large quantities of sucrose, had less than normal amounts of zein (the major storage protein) in the endosperm. Reduction of zein synthesis in the starch-deficient mutants was negatively correlated with the accumulation of sucrose and low osmotic potential in the developing endosperms. When radioactive amino acids were injected into the shank below ears that segregated for the starch-deficient mutant and normal kernels at 28 days post-pollination, mutant kernels absorbed only ca 22–36% of the labelled amino acids found in their normal controls. Thus, a low osmotic potential in the mutant endosperm may favour water movement but reduce solute movement. The inability of amino acids to move into the mutant endosperms, therefore, in part explains the reduction of zein accumulation in starch-deficient mutant endosperms.  相似文献   

3.
4.
The waxy (wx) gene in maize is associated with higher content of amylopectin in the endosperm and better flavor. The opaque-16 (o16) gene is associated with higher lysine content in the endosperm and better nutritional value. To pyramid the wx and o16 genes, cross and backcross populations were constructed using the o16 line QCL3024 and the two waxy lines, QCL5019 and QCL5008, as parents. The linkage marker umc1141 for the o16 gene and the internal marker phi027 for the wx gene were used to select the target genes. Simple sequence repeat markers covering the whole genome were used for background selection in individual progenies of the backcross population. The grain lysine content was determined using the Acid Orange-12 Dye Binding Lysine method. Qualitative and quantitative analyses of the grain content of amylopectin were performed using the I2-KI procedure and double-wavelength spectrophotometry, respectively. Four lines of the double recessive genotype wxwxo16o16 were obtained from the F4 generation of the cross population and three lines of the same genotype were obtained from the BC2F4 generation of the backcross population. The lysine content of the pyramid lines was 16–27 and 18–28 % higher than the waxy parents QCL5019 and QCL5008, respectively. The pyramid lines had 61–63 % more amylopectin than the high-lysine parent QCL3024. The three pyramid lines from the backcross population had similar genetic background to the waxy parent QCL5008. Our results are of significance for the improvement of maize quality.  相似文献   

5.
Polysome preparations obtained from opaque-2 and normal maize endosperms during development did not show any significant difference in sedimentation coefficient or nucleotide composition. The pattern of incorporation in vitro of lysine and leucine, however, differed quite distinctly in these two preparations. During early stages of maturity the polysomes from opaque-2 incorporated substantially more lysine and less leucine as compared with those from normal maize. Although the trend was reversed at 25 days post-pollination, this did not result in any significant zein accumulation since very little total protein was synthesized after that stage in opaque-2 maize endosperm. It is, therefore, suggested that the opaque-2 gene exerts a regulatory control on mRNA synthesis, required for zein formation at early stages of maturation.  相似文献   

6.
High-lysine maize: the key discoveries that have made it possible   总被引:1,自引:0,他引:1  
Forty-five years ago, a paper published by Mertz et al. (Science 145:279–280, 1964) initiated a revolution in the history of plant protein quality and affected dramatically the study of cereal crop storage proteins. The observation of the high lysine content of the endosperm of the opaque-2 (o2) maize mutant was a key factor in bringing about a new concept in the production of cereal seeds with a high nutritional value. It has been a long and very interesting road with astonishing results over these 45 years. We are now probably about to see the release of commercially engineered high-lysine maize lines. We have decided to pinpoint some key contributions to the science behind high-lysine plants and concentrated on the research done on maize, which is possibly the most complete and simple example to illustrate the advances achieved. However, studies on other plant species such as barley and model species such as tobacco are totally relevant and will be briefly addressed.  相似文献   

7.
8.
以38个QPM(或02)和对照普通玉米为实验材料,进行02基因控制赖氨酸超量积累的生化和遗传分析。主要实验结果如下:(1)QPM玉米02基因为隐性的单基因遗传,它控制着胚乳、雄穗和幼苗期叶片中赖氨酸的超量积累,一些修饰因子和遗传背景对胚乳物理性状产生影响;(2)QPM玉米、普通玉米的胚较之胚乳,或者QPM玉米胚乳较之普通玉米胚乳都含有较多的天门冬氮酸、甘氨酸、赖氨酸和精氨酸,含有较少的脯氨酸、谷氨酸、亮氨酸和苯丙氨酸;(3)两种玉米之间,在胚乳蛋白质含量及胚乳可溶性蛋白、醇溶蛋白、谷蛋白的赖氨酸含量方面没有什么不同;(4)已经育成一批QPM或02玉米自交系,并配制出几个强优势杂交组合。  相似文献   

9.
The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called “Quality Protein Maize” (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms.  相似文献   

10.
11.
12.
The effect of genotypes and texture on the content of proteins in maize grains was examined by assessing absolute amounts of six protein fractions in the whole endosperms of four wild‐type lines with high protein content and four quality protein maize (QPM) varieties and for hand‐dissected hard and soft endosperm regions from eight other lines. As previously reported for six wild‐type lines and their opaque‐2(o2) versions, zeins were predominant for all genetic backgrounds and all types of endosperms. From these data and others the amounts of zeins and true proteins (crude proteins free of non‐protein nitrogen) in developing and mature endosperms of wild‐type lines were correlated. The data points for zeins from hard endosperms lay between the regression line and the upper limit of confidence area. Those for zeins from soft endosperms were located at the lower part of confidence area and on a level with the points corresponding to the most immature endosperms. Furthermore, some data points for zeins from o2 and QPM samples lay near the lower limit while the others were outside the confidence area. This suggested an initial zein accumulation dependent on the genotype at a low relative rate, followed by an accumulation at higher rate. The conditions used for isolating and quantitating zeins are discussed.  相似文献   

13.
Lysine-ketoglutarate reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses l-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and there-after decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibrium-ordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.  相似文献   

14.
Protein-rich subcellular particulates were isolated by zonal centrifugation from homogenates of endosperms of normal, opaque-2, and floury-2 mutant corn (Zea maize) kernels at different stages of development. In early stages the high lysine mutants vary from normal corn by greater production of a glutelin protein not associated with the matrix. This protein is high in lysine and may become a component of matrix glutelin at later stages of maturity. Differences in size and structure of zein-rich protein bodies were observed in the mutant strains when compared with normal corn. Enhanced production of nonmatrix glutelin as well as the reduction in synthesis of lysine-deficient zein is responsible for the improved lysine content of the mutant endosperms at early stages of development.  相似文献   

15.
Lysine is the most limiting essential amino acid for animal nutrition in maize grains. Expression of naturally lysine-rich protein genes can increase the lysine and protein contents in maize seeds. AtMAP18 from Arabidopsis thaliana encoding a microtubule-associated protein with high-lysine content was introduced into the maize genome with the seed-specific promoter F128. The protein and lysine contents of different transgenic offspring were increased prominently in the six continuous generations investigated. Expression of AtMAP18 increased both zein and non-zein protein in the transgenic endosperm. Compared with the wild type, more protein bodies were observed in the endosperm of transgenic maize. These results implied that, as a cytoskeleton binding protein, AtMAP18 facilitated the formation of protein bodies, which led to accumulation of both zein and non-zein proteins in the transgenic maize grains. Furthermore, F1 hybrid lines with high lysine, high protein and excellent agronomic traits were obtained by hybridizing T6 transgenic offspring with other wild type inbred lines. This article provides evidence supporting the use of cytoskeleton-associated proteins to improve the nutritional value of maize.  相似文献   

16.
Lou X  Zhu J  Zhang Q  Zang R  Chen Y  Yu Z  Zhao Y 《Genetica》2005,124(2-3):291-300
Some kernel traits of agronomical importance in maize are affected by the opaque-2 (o2) gene and background polygenes, which express in different genetic systems such as embryo, endosperm, cytoplasm and maternal plant. A genetic model for seed quantitative traits with the o2 gene effects and polygenic effects as well as their GE interactions was used for protein content, lysine content, oil content and kernel density in maize. The results suggested that the o2 gene was involved in the traits investigated but the effects of the o2 gene were distinctive on various traits. The effects of the o2 gene were large on lysine content and protein content while minor on oil content. There was a substantially wide quantitative variation from polygenes expressing in different genetic systems for the traits evaluated. Significant GE interactions of the o2 gene and background polygenes declared that not only the main effects but also specific expressions depending on environments were responsible for variation of the traits studied. There seemed to have strong maternal heterosis and slight embryo heterosis for kernel density.  相似文献   

17.
玉米隐性突变o2基因能通过减少醇溶蛋白的合成来显著提高赖氨酸含量,为培育高赖氨酸含量的优质蛋白玉米(quality protein maize, QPM)提供了良好的基因资源。对玉米o2基因的发现、研究现状及其修饰基因的研究进展,以及当前育种家利用这两种基因相互作用培育优质蛋白玉米的研究进展进行了综述,以期为高赖氨酸玉米育种提供参考。  相似文献   

18.
Endosperm cell and starch granule (amyloplast) development of six maize (Zea mays L.) genotypes, normal, amylose-extender (ae), sugary (su), waxy (wx), amylose-extender sugary (ae su), and amylose-extender waxy (ae wx), was compared. Endosperms of all genotypes were indistinguishable at 14 days after pollination. Cells were highly vacuolated and those in the central crown area of the kernel contained small starch granules in close association with the nucleus. Cellular and nuclear enlargement occurred during endosperm development in all genotypes, and major and minor gradients in physiological age of endosperm cells were observed in all kernels. Amyloplast development varied with genotype. Plastid development in normal and wx cells was characterized by an initial starch granule formation followed by granule enlargement to cell maturity. Endosperms homozygous for ae (ae, ae su, and ae wx) developed abnormal plastid-granules. Secondary granule formations preceded development of abnormality in ae and ae su, but not in ae wx endosperms. In contrast to ae and ae su starch granules, ae wx granules were highly birefringent indicating a high degree of crystallinity. In all three ae genotypes, abnormality increased as a function of kernel and physiological cell age. The su mutant had two distinct effects on amyloplast development. First, a mobilization of the initially formed starch, and second a synthesis and accumulation of phytoglycogen and the formation of large rounded plastids. In ae su plastid development, there was a mobilization of the starch initially formed (resulting in irregularly shaped, nonbirefringent granules) but only small amounts of phytoglycogen were produced.  相似文献   

19.
Ladaslav Sodek 《Phytochemistry》1976,15(12):1903-1906
Tracer studies with aspartic acid-[4-14C], alanine-[1-14C] acetate-[2-14C] and diaminopimelic acid-[1,(7)-14C] injected into the developing endosperm of maize revealed that the biosynthesis of lysine and other amino acids occurs in this organ. The data suggest that lysine is synthesized via the diaminopimelic acid pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号