首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ladaslav Sodek 《Phytochemistry》1976,15(12):1903-1906
Tracer studies with aspartic acid-[4-14C], alanine-[1-14C] acetate-[2-14C] and diaminopimelic acid-[1,(7)-14C] injected into the developing endosperm of maize revealed that the biosynthesis of lysine and other amino acids occurs in this organ. The data suggest that lysine is synthesized via the diaminopimelic acid pathway.  相似文献   

2.
The control of lysine biosynthesis in maize   总被引:2,自引:0,他引:2  
Aspartate kinase has been partially purified and characterised from germinating maize seedlings. The Km for aspartate was 9 mM. Out of several amino acids which are potential feedback regulators of the enzymes, only lysine is markedly inhibitory, having a Ki of 13 μM and causing 100% inhibition at 0.5 mM. Lysine also protects the enzyme against heat inactivation. Dihydrodipicolinic acid synthase isolated from the same tissue is also inhibited by lysine, 1 mM causing 95% inhibition.  相似文献   

3.
Protein breakdown during germination of maize at 28° is closely correlated with the appearance of protease activity. In the first 2 days of germination, a slight disaggregation of only G3 glutelins into more simple elements (albumin-globulins) can be observed. Between 2 and 2.5 days, there is extensive breakdown of all protein fractions, the rate of which coincides with the rate of appearance of proteolytic activity. After 2.5 days these phenomena slow down and the bulk of the endosperm proteins disappears. Three acid proteases in endosperm extracts of germinated grain (P11, P21 and P22) have been isolated by affinity chromatography and gel filtration, and partially characterized. P11 (MW 40 000) which is present in the ungerminated grain, cannot hydrolyse prolamins and is insensitive to reducing agents. P21 (MW 36 000) and P22 (MW 12 000), which appear on day 3 of germination, can degrade prolamins in vitro. Reducing agents enhance their activity and prevent their aggregation or denaturation. Comparative assays with different substrates suggest our enzyme preparations are principally endotype proteases with little contaminating carboxypeptidase activity.  相似文献   

4.
A comparative study of free amino acids and protein fractions of normal with a double mutant (su1 o2) was made, during endosperm development in segregating ears of a maize synthetic. Zein content showed striking differences in the two genotypes, being 7.7 and 6 times greater in the normal endosperm at 24 and 47 days after pollination respectively. This observed decrease in zein synthesis, coded by sugary-1/opaque-2 genes, causes an accumulation of alanine, glutamic and aspartic acids, glutamine and asparagine in the high lysine endosperm mutant.  相似文献   

5.
In maize, a layer of basal endosperm cells adjacent to the pedicel is modified for a function in solute transfer. Three genes specifically expressed in this region, termed the basal endosperm transfer layer (BETL-2 to -4), were isolated by differential hybridization. BETL-2 to -4 are coordinately expressed in early and mid-term endosperm development, but are absent at later stages. BETL-2 to -4 coding sequences all predict small (<100 amino acids), secreted, cysteine-rich polypeptides which lack close relatives in current database accessions. BETL-3 and BETL-1 display some sequence similarities with each other and to plant defensins. BETL-2 to -4 promoter regions were isolated and compared, revealing the presence of a promoter-proximal microsatellite repeat as the most highly conserved sequence element in each sequence. Electrophoretic mobility shift assays (EMSA) showed that specific BETL-2 to -4 promoter fragments competed for binding to the same DNA-binding activity in nuclear extracts prepared from maize endosperm. Although BETL-2 to -4 are only expressed in basal endosperm cells, the DNA-binding activities detected were of two types: distal endosperm-specific, or present in both basal and distal endosperm extracts. On the basis of these findings, a model to account for the coordinate regulation of BETL genes in endosperm cells is proposed.  相似文献   

6.
The absolute activities of sucrose-UDP glucosyltransferase, glucose-6-phosphate ketoisomerase and soluble and bound ADPG-starch glucosyltransferase have been studied in normal and Opaque-2 maize endosperms during development. In general, the activities of these enzymes except sucrose-UDP glucosyltransferase were higher up to 20 days post-pollination and lower at the 30 day stage in Opaque-2 than in normal maize endosperms. However, sucrose-UDP glucosyltransferase activity was higher in normal maize endosperm up to the 20 day stage while it was lower at subsequent stages than in Opaque-2. It is suggested that the lower level of these enzymes, except sucrose-UDP glucosyltransferase, might be responsible for the reduced accumulation of starch in Opaque-2 endosperm during later stages of endosperm development.  相似文献   

7.
The synthetic and degradative activities toward sucrose of maize (Zea mays L.) endosperm sucrose-UDP glucosyltransferase preparations behave differently in several respects. Mg2+ or Ca2+ stimulate the synthetic activity but inhibit the degradative activity. Nueleotides have no effect on the synthetic activity but inhibit the degradative activity. The two activities have different pH optima, and ATP inhibits the degradative activity across the pH range tested. However, both activities exhibit identical patterns of heat inactivation, and various purification procedures employed have failed to separate these two activities. The Km values at pH 6.5 (degradation) and pH 8 (synthesis) are sucrose, 40 mM; UDP, 0.14 mM; ADP, 1,25 mM; UDPglucose, 1. 14 rnM; and fructose, 2.08 mM. In the developing endosperm, sucrose-6-P synthetase activity is only ca 1 % of the synthetic activity of sucrose-UDP glucosyltransferase.  相似文献   

8.
The tissue-specific, developmental, and genetic control of four endosperm-active genes was studied via expression of GUS reporter genes in transgenic maize plants. The transgenes included promoters from the maize granule-bound starch synthase (Waxy) gene (zmGBS), a maize 27 kDa zein gene (zmZ27), a rice small subunit ADP-glucose pyrophosphorylase gene (osAGP) and the rice glutelin 1 gene (osGT1). Most plants had a transgene expression profile similar to that of the endogenous gene: expression in the pollen and endosperm for the zmGBS transgene, and endosperm only for the others. Histological analysis indicated expression initiated at the periphery of the endosperm for zmGBS, zmZ27 and osGT1, while osAGP transgene activity tended to start in the lower portion of the seed. Transgene expression at the RNA level was proportional to GUS activity, and did not influence endogenous gene expression. Genetic analysis showed that there was a positive dosage response with most lines. Activity of the zmGBS transgene was threefold higher in a low starch (shrunken2) genetic background. This effect was not seen with zmZ27 or osGT1 transgenes. The expression of the transgenes is discussed relative to the known behaviour of the endogenous genes, and the developmental programme of the maize endosperm  相似文献   

9.
10.
To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)-[(3)H]ABA. The predominant pathway of ABA catabolism was via 8'-hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than basal kernels, while both returned to control levels after rewatering. ABA catabolism activity per gram fresh weight increased about three-fold in response to water stress, but was about the same in apical and basal kernels on a fresh weight basis. ABA catabolism activity was three to four-fold higher in placenta than endosperm, and activity was higher in apical than basal kernels. In vitro incubation tests indicated that glucose did not affect ABA catabolism. We conclude that placenta tissue plays an important role in ABA catabolism, and together with ABA influx and compartmentation, determine the rate of ABA transport into endosperms.  相似文献   

11.
Synthesis of proteins rich in lysine declines progressively with endosperm development and these proteins appear to be degraded preferentially at later stages. The proteolytic enzymes in extracts of endosperms at a late stage of development release considerably more lysine radioactivity from labelled endosperm proteins as compared with the enzymes in endosperms at an early stage.  相似文献   

12.
The in vivo amounts of UDPG, UTP, UDP and UMP, metabolites known to influence the activity of sucrose phosphate synthase (SPS) and sucrose synthase (SS), were measured throughout 5 hr incubations of scutellum slices in fructose or water, i.e. under conditions of sucrose synthesis or breakdown. Cytosolic concentrations were estimated assuming that these metabolites were confined to the cytosol. Within the estimated in vivo concentration ranges, UDPG, UTP and UDP had little effect on the in vitro SS activity, but glucose (100 mM) inhibited SS in the synthesis direction by 63–70% and in the breakdown direction by 86–93%. Glucose inhibition of SS was considerably less when saturating levels of substrates were used. Sucrose did not inhibit SS. It is concluded that during germination the glucose produced from starch breakdown in the maize endosperm enters the scutellum and inhibits SS, preventing a futile cycle and limiting SS participation in sucrose synthesis.  相似文献   

13.
Labelled saccharopine was synthesized and showed a low conversion to lysine in barley seedlings. The results indicate a role of saccharopine in either lysine biosynthesis or catabolism.  相似文献   

14.
15.
16.
Starch-deficient maize (Zea mays) mutants, brittle-2 (bt2), brittle-1 (bt), and shrunken-2 (sh2), which accumulated large quantities of sucrose, had less than normal amounts of zein (the major storage protein) in the endosperm. Reduction of zein synthesis in the starch-deficient mutants was negatively correlated with the accumulation of sucrose and low osmotic potential in the developing endosperms. When radioactive amino acids were injected into the shank below ears that segregated for the starch-deficient mutant and normal kernels at 28 days post-pollination, mutant kernels absorbed only ca 22–36% of the labelled amino acids found in their normal controls. Thus, a low osmotic potential in the mutant endosperm may favour water movement but reduce solute movement. The inability of amino acids to move into the mutant endosperms, therefore, in part explains the reduction of zein accumulation in starch-deficient mutant endosperms.  相似文献   

17.
Regulation of programmed cell death in maize endosperm by abscisic acid   总被引:26,自引:0,他引:26  
Cereal endosperm undergoes programmed cell death (PCD) during its development, a process that is controlled, in part, by ethylene. Whether other hormones influence endosperm PCD has not been investigated. Abscisic acid (ABA) plays an essential role during late seed development that enables an embryo to survive desiccation. To examine whether ABA is also involved in regulating the onset of PCD during endosperm development, we have used genetic and biochemical means to disrupt ABA biosynthesis or perception during maize kernel development. The onset and progression of cell death, as determined by viability staining and the appearance of internucleosomal DNA fragmentation, was accelerated in developing endosperm of ABA-insensitive vp1 and ABA-deficient vp9 mutants. Ethylene was synthesized in vp1 and vp9 mutant kernels at levels that were 2–4-fold higher than in wild-type kernels. Moreover, the increase and timing of ethylene production correlated with the premature onset and accelerated progression of internucleosomal fragmentation in these mutants. Treatment of developing wild-type endosperm with fluridone, an inhibitor of ABA biosynthesis, recapitulated the increase in ethylene production and accelerated execution of the PCD program that was observed in the ABA mutant kernels. These data suggest that a balance between ABA and ethylene establishes the appropriate onset and progression of programmed cell death during maize endosperm development.  相似文献   

18.
19.
Preincubation of maize leaves crude extracts with NADH resulted in a progressive accumulation of nitrite which mimicked a rapid and lineal activation of nitrate reductase. Nevertheless, in partially purified preparations it was found that preincubation at pH 8.8 with NADH promoted a gradual inactivation of nitrate reductase. At pH 7.5, the enzyme was not inactivated by the presence of NADH alone, but, with the simultaneous presence of a low concentration of cyanide, a fast inactivation took place. The NADH-cyanide-inactivated nitrate reductase remained inactive after removing the excess of NADH and cyanide by filtration through Sephadex G-25. However, it could be readily reactivated by incubation with ferricyanide or by a short exposure to light in the presence of FAD. Prolonged irradiation caused a progressive inactivation of the photoreactivated enzyme.  相似文献   

20.
The soluble sugars were determined in different parts of maize seedlings (seeds, roots and shoots), 0, 2, 4 and 6 days after sowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号