首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
T4病毒科由一类单股正链RNA病毒组成,分为松天蛾β样病毒属和松天蛾ω样病毒属。这2个属的病毒具有不同的基因组结构,β样病毒含单组分基因组,其结构蛋白由一亚基因组RNA表达; 而ω样病毒含双组分基因组,2个RNA分子分别编码复制酶蛋白和结构蛋白。在T4病毒基因组RNA 3′端有类似tRNA的二级结构。ω样病毒壳蛋白的氨基酸序列一致性高达66%~86%, 而β样病毒壳蛋白的氨基酸同源性则要低得多。在昆虫细胞中表达壳蛋白基因时都能形成病毒类似粒子。该文还介绍了T4病毒复制机理以及T4病毒与其他病毒的进化关系。  相似文献   

2.
A型流感病毒是正粘病毒科成员,为单股负链分节段RNA病毒,全基因组由八个节段组成,分别编码八种结构蛋白(PB2、PB1、PA、HA、NP、NA、M1和M2)和两种非结构蛋白(NS1和NS2).核蛋白(NP)和RNA聚合酶复合体与病毒的八个RNA节段组成八个螺旋丝状的病毒核衣壳(RNP),核衣壳被双层类脂膜包裹,脂膜内为基质蛋白(M1)层,膜上镶嵌着HA、NA和M2三种膜蛋白.HA和NA为流感病毒的主要抗原.根据HA和NA抗原性的差异,A型流感病毒可分16个HA亚型和9个NA亚型[1].A型流感病毒具有广泛的宿主范围和超强的重组变异能力,对人类健康的威胁日趋严重,引起各国政府和科技工作者的广泛关注.研究RNA聚合酶的功能、揭示病毒复制和变异机理是目前抗流感病毒感染研究的热点之一.本文综述了流感病毒RNA聚合酶及其对病毒基因组复制和转录调控的研究进展.  相似文献   

3.
人博卡病毒1 (human bocaparvovirus 1, HBoV1)为感染人并引起疾病的两种细小病毒之一。其感染2−5岁婴幼儿,能引起轻度或重度急性呼吸道疾病,严重时可危及生命。HBoV1基因组末端含末端反向重复序列(repeat the sequence in reverse, ITR),为病毒基因组复制所必需,但是难以进行PCR扩增合成。本研究通过分步合成末端ITR及分子克隆方法成功构建HBoV1的全长感染性克隆pSKHBoV1。经转染HEK293细胞后,分别从重要非结构蛋白的表达、病毒RNA转录后修饰与加工、病毒基因组复制水平以及子代病毒粒子基因组鉴定等方面,证实构建的感染性克隆在转染HEK293细胞后能够进入正常的复制周期并具有拯救出病毒粒子的潜力,这为后续研究HBoV1的复制增殖、病毒与宿主互作关系以及病毒疫苗的研发奠定了基础。  相似文献   

4.
RNA噬菌体病毒样颗粒包装机制及其应用研究进展   总被引:2,自引:0,他引:2  
RNA噬菌体是一类结构简单的较小病毒,病毒衣壳为T=3的20面体对称结构,由180拷贝的衣壳蛋白亚基组成,其基因组为正义单链RNA,约含有3500个核苷酸,具有mRNA的作用,编码4种蛋白:病毒衣壳蛋白,成熟酶蛋白,复制酶亚基和裂解蛋白.这些噬菌体最初从大肠埃希菌属中分离出,尽管后来在柄杆菌属和假单胞菌属中也被陆续发现,但迄今为止,对大肠埃希菌噬菌体的研究最为广泛和透彻,根据血清学和生化性质的不同,此类噬菌体可被分成4个类群.  相似文献   

5.
载体表达的siRNA分子对猪圆环病毒2型复制的抑制作用   总被引:2,自引:0,他引:2  
王海燕  刘文博  高崧  刘秀梵 《微生物学报》2008,48(11):1507-1513
[目的]寻找一种基于RNA干扰技术的猪圆环病毒2型感染的防控方法.[方法]根据猪圆环病毒2型毒株基因组核苷酸序列,设计了3条特异性小干扰RNA(short interfering RNA,siRNA)分子,其中2条针对猪圆环病毒1型和2型复制酶基因(rep),1条针对猪圆环病毒2型核衣壳蛋白基因(cap),将合成的DNA片段退火形成双链,分别连接到RNAi-Ready pSIREN-RetroQ ZsGreen载体鼠源U6启动子下游,转化大肠杆菌得到阳性克隆,测序鉴定后分别命名为Retro-SH1,Retro-SH4,Retro-SH6.用上述质粒转染PCV2感染前、后的Dulac细胞及肌肉注射PCV2感染前、后的BALB/c小鼠,应用实时定量PCR试验评价其对病毒在细胞及小鼠体内复制的抑制作用,免疫组化法检测脾脏中病毒的存在.[结果]感染PCV2前或后转染500 ng Retro-SH1,Retro-SH4,Retro-SH6质粒能有效抑制PCV2在Dulac细胞上的复制,抑制率最高可达99%以上,对10株不同来源的临床分离株在细胞中复制的抑制作用同样明显,且不同毒株间差异不大.动物试验中,肌肉注射10μg上述不同siRNA分子对小鼠体内PCV2的复制有一定的抑制作用,其抑制率在26%至99%之间.[结论]载体表达的siRNA分子可能成为防控猪圆环病毒2型感染的一种新工具.  相似文献   

6.
小麦丛矮病毒是在中国发现的一种植物弹状病毒 ,病毒基因组是由一条单链负链RNA组成并编码 5种病毒结构蛋白质 :表面糖蛋白G、膜基质蛋白M、核衣壳蛋白N、大蛋白L和所谓非结构蛋白NS。后来的研究证明 ,在弹状病毒的模式病毒———水泡性口膜炎病毒中 ,NS蛋白也是一种结构蛋白 ,而且在成熟的病毒粒子中以各种磷酸化形式存在 ,并且证明NS的磷酸化和去磷酸化对病毒基因组的转录和复制的调控起重要的作用。用体外磷酸化方法证明 ,结合于小麦丛矮病毒的核衣壳上的NS蛋白可以被磷酸化 ;同时也证明 ,从大肠杆菌中表达的小麦丛矮病毒的NS蛋白 ,只有在病毒核衣壳存在下才可以体外被磷酸化 ;从而证明 ,小麦丛矮病毒或植物弹状病毒的NS蛋白也是一种磷酸化蛋白质 ,在成熟病毒粒子中可能存在磷酸化和非磷酸化两种形式。病毒的L蛋白除以前报道的具有RNA聚合酶活力外 ,也具有蛋白激酶的活力。  相似文献   

7.
齐立  张立国  张智清 《病毒学报》2002,18(4):381-383
甲型流行性感冒(流感)病毒基因组由8个分节段的负链RNA组成,共编码10种蛋白,其中在病毒复制的早期即有NP蛋白和NS1蛋白的大量表达,提示这两种蛋白在病毒复制过程中及与细胞蛋白的相互作用中发挥着重要的功能.RNA第8节段编码两种蛋白,即非结构蛋白1(NS1)和2(NS2).  相似文献   

8.
SiRNA抑制柯萨奇B3病毒的复制和表达   总被引:1,自引:0,他引:1  
目的 研究观察体外合成siRNA对培养HELA细胞中柯萨奇B3病毒(Coxsackievirus B3,CVB3)的影响。方法根据siRNA靶序列设计原则,针对编码CVB3病毒聚合酶、VP1蛋白和5’非编码区基因组,特异性地体外合成三对siRNA,同时合成一对与CVB基因组序列无关的阴性对照siRNA。利用脂质体转染进入Hela细胞,用CVB3感染培养HELA细胞,观察转染后HELA细胞病变;采用RT-PCR技术检测感染CVB3各组的病毒RNA;用免疫荧光技术检测各组CVB3蛋白的表达;并用培养细胞上清液再感染HELA细胞观察病毒滴度。结果针对CVB3病毒聚合酶的siR-NA能有效的抑制病毒的复制和CVB3蛋白的表达,并能抑制病毒的再感染;而针对VP1蛋白和5’非编码区的siRNA能部分抑制病毒的复制和CVB3蛋白的表达。结论我们设计合成针对编码CVB3病毒聚合酶基因组的siRNA能有效抑制CVB3病毒复制和表达。  相似文献   

9.
MS2噬菌体为正义单链RNA噬菌体,基因组含有3569个核苷酸,编码成熟酶蛋白、衣壳蛋白、复制酶蛋白和裂解蛋白。MS2噬菌体复制酶编码基因5'端一个由19个碱基组成的茎环结构(又称包装位点)是衣壳蛋白二聚体与RNA相互作用的部位,二者相互作用形成的复合物是启动噬菌体自我包装的信号。MS2噬菌体衣壳蛋白与包装位点结合的特异性已被应用于RNA病毒核酸检测的标准物质、校准品和质控品的研究,实时动态监测活细胞内RNA的运动,以及RNA体内递送载体的研究等领域。  相似文献   

10.
家蚕细小病毒样病毒(Bombyx mori parvo-like virus,BmPLV)是一种二分病毒,该病毒在家蚕中肠柱状细胞核内复制和包装,感染的细胞核呈现过分膨胀、细胞核孚尔根浓染等细胞病理学特征。病毒粒子直径20~24 nm,无囊膜呈球型。基因组为单链线性双分子DNA(VD1、VD2),分别独立包装在各自的衣壳中。病毒编码四个非结构蛋白NS1、NS2、NS3和pol(DNA聚合酶),一个主要结构蛋白VP及次要结构蛋白P133。其基因组末端反向重复序列可形成与BmPLV复制有关的"锅柄形"结构,以及含自身编码的DNA聚合酶的序列,推测该病毒与腺病毒复制方式相类似,依靠共价蛋白为起始物完成复制。  相似文献   

11.
12.
The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negative-strand RNA synthesis, 1a localizes to ER membranes and recruits both positive-strand BMV RNA templates and the polymerase-like 2a protein to ER membranes. Here, we show that BMV RNA replication in S. cerevisiae is markedly inhibited by a mutation in the host YDJ1 gene, which encodes a chaperone Ydj1p related to Escherichia coli DnaJ. In the ydj1 mutant, negative-strand RNA accumulation was inhibited even though 1a protein associated with membranes and the positive-strand RNA3 replication template and 2a protein were recruited to membranes as in wild-type cells. In addition, we found that in ydj1 mutant cells but not wild-type cells, a fraction of 2a protein accumulated in a membrane-free but insoluble, rapidly sedimenting form. These and other results show that Ydj1p is involved in forming BMV replication complexes active in negative-strand RNA synthesis and suggest that a chaperone system involving Ydj1p participates in 2a protein folding or assembly into the active replication complex.  相似文献   

13.
东部马脑脊髓炎病毒的分子生物学进展   总被引:1,自引:0,他引:1  
东部马脑脊髓炎病毒属虫媒病毒,能引起人和马发生急性脑炎。东马病毒为单股正链RNA病毒,可分为南美型和北美型,包括两个开放读码框架,分别编码结构蛋白(E1,E2,E2,C,6K)和非结构蛋白(nsp1,nsp2,nsp3,nsp4)。其中E1/E2包膜糖蛋白以异二聚体的形式病毒颗粒外刺突。非结构蛋白主要能与负链RNA的合成,近来,随着研究深入,病毒受体越来越受到广泛关注。本介绍东部马脑脊髓炎病毒结构、进化、复制、组装等方面的分子生物学进展。  相似文献   

14.
15.
16.
Nodamura virus (NoV) and Flock House virus (FHV) are members of the family Nodaviridae. The nodavirus genome is composed of two positive-sense RNA segments: RNA1 encodes the viral RNA-dependent RNA polymerase and RNA2 encodes the capsid protein precursor. A small subgenomic RNA3, which encodes nonstructural proteins B1 and B2, is transcribed from RNA1 during RNA replication. Previously, FHV was shown to replicate both of its genomic RNAs and to transcribe RNA3 in transiently transfected yeast cells. FHV RNAs and their derivatives could also be expressed from plasmids containing RNA polymerase II promoters. Here we show that all of these features can be recapitulated for NoV, the only nodavirus that productively infects mammals. Inducible plasmid-based systems were used to characterize the RNA replication requirements for NoV RNA1 and RNA2 in Saccharomyces cerevisiae. Induced NoV RNA1 replication was robust. Three previously described NoV RNA1 mutants behaved in yeast as they had in mammalian cells. Yeast colonies were selected from cells expressing NoV RNA1, and RNA2 replicons that encoded yeast nutritional markers, from plasmids. Unexpectedly, these NoV RNA replication-dependent yeast colonies were recovered at frequencies 10(4)-fold lower than in the analogous FHV system. Molecular analysis revealed that some of the NoV RNA replication-dependent colonies contained mutations in the NoV B2 open reading frame in the replicating viral RNA. In addition, we found that NoV RNA1 could support limited replication of a deletion derivative of the heterologous FHV RNA2 that expressed the yeast HIS3 selectable marker, resulting in formation of HIS+ colonies.  相似文献   

17.
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is a host factor required for genome RNA replication of enteroviruses, small non-enveloped viruses belonging to the family Picornaviridae. Here, we demonstrated that PI4KB is also essential for genome replication of another picornavirus, Aichi virus (AiV), but is recruited to the genome replication sites by a different strategy from that utilized by enteroviruses. AiV non-structural proteins, 2B, 2BC, 2C, 3A, and 3AB, interacted with a Golgi protein, acyl-coenzyme A binding domain containing 3 (ACBD3). Furthermore, we identified previously unknown interaction between ACBD3 and PI4KB, which provides a novel manner of Golgi recruitment of PI4KB. Knockdown of ACBD3 or PI4KB suppressed AiV RNA replication. The viral proteins, ACBD3, PI4KB, and phophatidylinositol-4-phosphate (PI4P) localized to the viral RNA replication sites. AiV replication and recruitment of PI4KB to the RNA replication sites were not affected by brefeldin A, in contrast to those in enterovirus infection. These results indicate that a viral protein/ACBD3/PI4KB complex is formed to synthesize PI4P at the AiV RNA replication sites and plays an essential role in viral RNA replication.  相似文献   

18.
19.
Vlot AC  Laros SM  Bol JF 《Journal of virology》2003,77(20):10790-10798
RNAs 1 and 2 of the tripartite genome of alfalfa mosaic virus encode the replicase proteins P1 and P2, respectively, whereas RNA 3 encodes the movement protein and coat protein. Transient expression of wild-type (wt) and mutant viral RNAs and proteins by agroinfiltration of plant leaves was used to study cis- and trans-acting functions of the helicase-like domain in P1 and the polymerase-like domain in P2. Three mutations in conserved motifs of the helicase-like domain of P1 affected one or more steps leading to synthesis of minus-strand RNAs 1, 2, and 3. In leaves containing transiently expressed P1 and P2, replication of wt but not mutant RNA 1 was observed. Apparently, the transiently expressed P1 could not complement the defect in replication of the RNA 1 mutant. Moreover, the transiently expressed wt replicase supported replication of RNA 2, but this replication was blocked in trans by coexpression of mutant RNA 1. However, expression of mutant RNA 1 did not interfere with the replication of RNA 3 by the wt replicase. Similarly, a mutation in the GDD motif encoded by RNA 2 could not be complemented in trans and affected the replication of RNA 1 by a wt replicase, while replication of RNA 3 remained unaffected. In competition assays, the transient wt replicase preferentially replicated RNA 3 over RNAs 1 and 2. The results indicate that one or more functions of P1 and P2 act in cis and point to the existence of a mechanism that coordinates the replication of RNAs 1 and 2.  相似文献   

20.
Positive-strand RNA [(+)RNA] viruses invariably replicate their RNA genomes on modified intracellular membranes. In infected Drosophila cells, Flock House nodavirus (FHV) RNA replication complexes form on outer mitochondrial membranes inside ~50-nm, virus-induced spherular invaginations similar to RNA replication-linked spherules induced by many (+)RNA viruses at various membranes. To better understand replication complex assembly, we studied the mechanisms of FHV spherule formation. FHV has two genomic RNAs; RNA1 encodes multifunctional RNA replication protein A and RNA interference suppressor protein B2, while RNA2 encodes the capsid proteins. Expressing genomic RNA1 without RNA2 induced mitochondrial spherules indistinguishable from those in FHV infection. RNA1 mutation showed that protein B2 was dispensable and that protein A was the only FHV protein required for spherule formation. However, expressing protein A alone only "zippered" together the surfaces of adjacent mitochondria, without inducing spherules. Thus, protein A is necessary but not sufficient for spherule formation. Coexpressing protein A plus a replication-competent FHV RNA template induced RNA replication in trans and membrane spherules. Moreover, spherules were not formed when replicatable FHV RNA templates were expressed with protein A bearing a single, polymerase-inactivating amino acid change or when wild-type protein A was expressed with a nonreplicatable FHV RNA template. Thus, unlike many (+)RNA viruses, the membrane-bounded compartments in which FHV RNA replication occurs are not induced solely by viral protein(s) but require viral RNA synthesis. In addition to replication complex assembly, the results have implications for nodavirus interaction with cell RNA silencing pathways and other aspects of virus control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号