首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
目的:研究牻牛儿基牻牛儿基焦磷酸合成酶(geranylgeranyl diphosphate synthase,GGPPs)基因启动子的活性;方法:从曼地亚红豆杉细胞中克隆ggpps基因5'-侧翼序列,并将该侧翼序列代替pBI121质粒上的CaMV35S启动子,以Gus基因作为报告基因构建植物表达载体,并进一步导入农杆菌LBA4404中获得阳性转化子,然后用叶盘转化法验证该侧翼序列的启动子活性;结果:本研究从曼地亚红豆杉细胞中成功克隆了ggpps基因的5'-侧翼序列,并且验证了该侧翼序列具有启动子活性;结论:ggpps基因的5'-侧翼序列的测序结果表明本实验成功克隆了该侧翼序列,启动子功能验证结果表明ggpps 5'-侧翼序列具有启动子活性,这些结果为进一步的通过缺失法进行ggpps基因启动子功能研究奠定了基础.  相似文献   

2.
牻牛儿基牻牛儿基焦磷酸(GGPP)在真核生物中主要参与对包括Rho/Rac,Rap和Rab家族在内的多种蛋白质的翻译后修饰及细胞凋亡的调控.牻牛儿基牻牛儿基焦磷酸合成酶(GGPPS)是合成GGPP的关键酶,它催化法呢基焦磷酸与异戊烯焦磷酸的缩合反应而产生GGPP.报道了从人睾丸cDNA文库中克隆到一个与果蝇GGPPS cDNA高度同源的基因转录本,它的序列长1466 bp,其中nt 239~1138是一个完整的可读框,编码一个由300个氨基酸组成的35 ku蛋白质.该推导蛋白质的氨基酸序列与果蝇GGPPS的一致性和相似性分别达到了57.5%和75%,并且含有异戊二烯转移酶中保守的5个特征性结构域.Northern杂交结果显示人GGPPS基因在心脏中表达最高,在脾、睾丸、脑、胎盘、肺、肝、骨胳肌、肾、胰腺组织中为中度表达,而在其他组织中未见有明显的杂交带.采用辐射杂种细胞系定位技术,发现GGPPS位于人染色体lq43区.由于此前有遗传连锁资料证实该区域存在一个前列腺癌的易感位点,并且另有研究发现GGPP的结构类似物可抑制PC-3前列腺癌细胞系中p21rap蛋白的牻牛儿基牻牛儿基化,从而提示GGPPS有可能是与该病相关的候选基因之一.  相似文献   

3.
为了揭示竹叶花椒萜类代谢的分子机理及嫁接对其风味的影响,该文依据转录组数据设计特异性引物,采用RT-PCR方法从竹叶花椒(Zanthoxylum armatum)中克隆得到一个全新的牻牛儿基牻牛儿基焦磷酸合成酶(GGPPS)基因的全长cDNA序列,命名为ZaGGPPS,并利用NCBI、ProParam、SignalP 4.1 server、DNAMAN和MEGA 7.0软件对ZaGGPPS基因进行生物信息学分析,并比较其在嫁接树和实生树中的表达量。结果表明:ZaGGPPS包含完整的cDNA开放阅读框(OFR),由1 086 bp组成,编码361个氨基酸。其蛋白的相对分子量为39 079.14 Da,理论等电点pI为6.38。Blast比对结果显示该蛋白质属于GGPPS家族蛋白,含有2个GGPPS蛋白特有的天冬氨酸富集基序,分别是"DDXXXXD"和"DDXXD",以及5个特征性功能结构域。系统进化树结果显示竹叶花椒与芸香科植物甜橙(Citrus sinensis)、克里曼丁桔(C. clementina)、柚子(C. maxima)等亲缘关系较近。荧光定量PCR检测显示,ZaGGPPS基因在竹叶花椒中的表达量从高到低分别为实生树的叶、嫁接树的叶、实生树的茎、嫁接树的茎。牻牛儿基牻牛儿基焦磷酸合成酶是竹叶花椒萜类化合物生物合成途径中的关键酶,通过嫁接可影响ZaGGPPS基因在叶和茎中的表达量。该文对竹叶花椒ZaGGPPS基因进行了克隆与分析,为后续深入研究竹叶花椒香气形成的分子机理及利用分子生物学手段选育优良品种提供理论依据。  相似文献   

4.
紫杉二烯是紫杉醇合成途径中的前体物质。紫杉醇是红豆杉的一种重要的次级代谢产物,是一种重要的新型抗癌药物。然而,紫杉醇在植物中含量低且难提取,限制了高效应用。利用基因工程手段,借助担子菌类真菌灰盖鬼伞具有的内源类异戊二烯合成途径,构建含有牻牛儿基牻牛儿基焦磷酸(Geranylgeranyl diphosphate,GGPP)合酶和紫杉二烯合酶的融合基因表达载体p Bg GGTS和独立表达盒表达载体p Bg GGg TS,并分别转入灰盖鬼伞LT2菌株中,经过选择性筛选、PCR鉴定、Southern blotting杂交验证,分别获得了5株融合表达的灰盖鬼伞工程菌和5株独立表达盒的灰盖鬼伞工程菌株。各随机挑选了1株工程菌株,分别提取菌丝体和发酵液分析。GC-MS分析表明,两种工程菌株与原出发菌株的菌丝提取物无明显差异峰,而与出发菌株的发酵液提取物相比,两种转基因灰盖鬼伞的发酵液中均出现了明显的差异峰,采用GC-MS特征质量离子分析方法判定为紫杉二烯,分别为44 ng/L(转化p Bg GGg TS)和30 ng/L(转化p Bg GGTS)。结果表明,通过在灰盖鬼伞融合基因或各自独立表达的形式共表达ggpps和ts基因,可以生物合成紫杉二烯。  相似文献   

5.
从茶树基因组鉴定得到牻牛儿基牻牛儿基焦磷酸合成酶基因CsGGDPS7,以铁观音茶树为材料克隆获得全长cDNA(GenBank登录号MH891780)。CsGGDPS7序列全长1 185bp,包含1 098bp开放阅读框(ORF),编码365个氨基酸。预测结果显示在N端包含叶绿体转运肽,亚细胞定位于叶绿体中。氨基酸序列分析结果显示,具有类异戊二烯合成酶家族的5个保守域和2个特征功能域(DDXXXXD和DDXXD)。进化树结果表明与油橄榄(Olea europaea)OeGGDPS7亲缘关系最近。荧光定量检测显示,CsGGDPS7在叶片中的表达量显著高于其他组织,但花发育阶段CsGGDPS7表达量差异不显著。在乌龙茶做青过程中,CsGGDPS7在晒青阶段就快速上调表达并在三摇达到峰值。CsGGDPS1和CsGGDPS2表达也受做青调控,但CsGGDPS4不受做青调控。研究推测,CsGGDPS7可能与乌龙茶萜类香气物质合成密切相关。  相似文献   

6.
目的:利用发根农杆菌ACCC10060介导丹参牻牛儿基牻牛儿基焦磷酸合酶1基因(SmGGPS1)RNA干扰(RNAi)载体转化丹参叶片,生成SmGGPS1的RNAi转基因毛状根。方法:根据已克隆到的SmGGPS1特异区域设计并合成2段RNAi序列,分别插入RNAi双元载体pK7GWIWG2D(Ⅱ)中,构建2个含卡那霉素(Kan)和绿色荧光蛋白(GFP)双筛选标记的植物表达载体pK7GWIWG2D(Ⅱ)-SmGGPS1-RNAi2和pK7GWIWG2D(Ⅱ)-SmGGPS1-RNAi3;利用带有上述2个RNAi载体的发根农杆菌ACCC10060侵染丹参叶片,诱导生成转基因毛状根;通过Kan抗性筛选和GFP绿色荧光观察统计转化率。结果:分别得到SmGGPS1-RNAi2和SmGGPS1-RNAi3转基因毛状根301根和399根,平均转化率为60.34%。结论:首次建立了发根农杆菌介导的外源基因转化丹参的体系。  相似文献   

7.
该研究基于叶绿体基因组数据,对桃金娘目(6科44属97种)及其近缘类群(牻牛儿苗目2科5属25种)的系统发育关系进行了分析。结果表明:(1)桃金娘目基因组大小为152~171 kb,包括的蛋白质编码基因数目为74~90个;牻牛儿苗目基因组大小为116~242 kb,包括的蛋白质编码基因数目为75~132个。(2)对比叶绿体基因组序列和蛋白质编码基因所构建的系统发育树结果,在目间及牻牛儿苗目内差异显著,但在桃金娘目内基本一致。(3)基于蛋白质编码基因所构建的系统发育树表明,桃金娘目和牻牛儿苗目均为单系,为姐妹类群;桃金娘目内形成两个大支,桃金娘科、Vochysiaceae、野牡丹科形成一支,其中桃金娘科和Vochysiaceae关系较近是姐妹群,柳叶菜科、千屈菜科和使君子科形成另一支,其中柳叶菜科和千屈菜科关系较近为姐妹群;科级水平,桃金娘科、Vochysiaceae、野牡丹科、柳叶菜科、千屈菜科、使君子科和牻牛儿苗科均为单系(仅包括一个物种的科除外)。(4)支持将石榴属及菱属置于千屈菜科。(5)对蛋白质编码基因序列变异分析的结果表明,野牡丹科19个属的共享变异基因数目为53个,变异范围为5.84%~29.53%,桃金娘科9个属的共享变异基因数目为57个,其变异范围为1.31%~15.78%。该研究结果为进一步研究桃金娘目及相关科属的系统发育提供了理论依据。  相似文献   

8.
牻牛儿基牻牛儿基焦磷酸合成酶(GGPPS)在植物体内催化牻牛儿基牻牛儿基焦磷酸(GGPP)的合成,GGPP是萜类物质、类胡萝卜素、叶绿素及几个重要植物激素合成的前体物,是联系植物体内多条重要次生代谢通路的节点物质。本文综述了植物GGPPS基因近年来的生物学功能研究进展和该基因家族的遗传分类情况,以及GGPPS小亚基基因的重要调控作用,拟为深入研究植物GGPPS基因的生物学功能和萜类含量调控的遗传工程提供新认识和新思路。  相似文献   

9.
曼地亚红豆杉植株中GGPP合成酶的克隆与分析   总被引:4,自引:0,他引:4  
从 5年生曼地亚红豆杉 (Taxusmedia)的当年生新鲜枝叶中提取分离出mRNA ,然后根据已知植物的牛儿基牛儿基焦磷酸合成酶基因 (GGPPS基因 )DNA序列保守区设计特异简并引物。RT PCR获得了一条大小约 60 0bp的扩增谱带 ,回收该特异谱带并进行TA克隆 ,蓝白斑筛选 ,得到若干阳性克隆。经过质粒大小比较和PCR验证后 ,进行序列测定和同源性比较。发现该序列属于GGPP合成酶的片断 ,与Taxuscanadensis (AAD 1 60 1 8 1 )和Abiesgrandis (AAL1 761 4 2 )的GGPP合成酶相应区段的氨基酸序列一致性为 98%和 86%。蛋白质序列分析发现该序列含有一个特征的异戊二烯合成酶保守的结构域。进化树分析表明 ,曼地亚红豆杉GGPPS在进化上位于植物类 ,靠近古细菌类。曼地亚红豆杉GGPPS基因的克隆为研究红豆杉生产紫杉醇的分子机理和转基因植株的构建奠定了良好的基础。  相似文献   

10.
 采用分室培养方法研究接种幼套球囊霉(Glomus etunicatum,BEG168)、摩西球囊霉(G. mosseae, BEG167)、混合菌剂(M)对两种沙漠早春短命植物小车前(Plantago minuta)和尖喙牻牛儿苗(Erodium oxyrrhynchum)生长发育及矿质养分吸收的影响。结果表明,接种AMF处理的小车前和尖喙牻牛儿苗根系形成了典型的菌根结构,侵染率为22 %~60%;接种AMF提高了小车前和尖喙牻牛儿苗两种植物的生物量、株高及N、P养分吸收量。小车前单独接种BEG167、BEG168以及混合接种都显著提高了单株种子数量,其增幅分别 为67%、50%和78%。上述结果说明,在极端贫瘠和干旱的古尔班通古特沙漠中,丛枝菌根真菌对于早春短命植物小车前和尖喙牻牛儿苗的生态适应性的贡献表现为促进营养生长、提高后代(种子)繁殖数量。  相似文献   

11.
Tocotrienols are the primary form of vitamin E in seeds of most monocot plants, including cereals such as rice and wheat. As potent antioxidants, tocotrienols contribute to the nutritive value of cereal grains in human and livestock diets. cDNAs encoding homogentisic acid geranylgeranyl transferase (HGGT), which catalyzes the committed step of tocotrienol biosynthesis, were isolated from barley, wheat and rice seeds. Transgenic expression of the barley HGGT in Arabidopsis thaliana leaves resulted in accumulation of tocotrienols, which were absent from leaves of nontransformed plants, and a 10- to 15-fold increase in total vitamin E antioxidants (tocotrienols plus tocopherols). Overexpression of the barley HGGT in corn seeds resulted in an increase in tocotrienol and tocopherol content of as much as six-fold. These results provide insight into the genetic basis for tocotrienol biosynthesis in plants and demonstrate the ability to enhance the antioxidant content of crops by introduction of an enzyme that redirects metabolic flux.  相似文献   

12.
Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The ??-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. ??-tocopherol methyltransferase (??-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of ??- and ??-isomers to ??- and ??-isomers. In present study, the Arabidopsis ??-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the ??-/??-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the ??-isomers were converted to ??-isomers, especially the ??- and ??-tocotrienol levels were dramatically decreased. As a result, the ??-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the ??-tocotrienol content. The results showed that the ??-/??-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on ??-tocopherol level, which may reflect the fact that ??-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign ??-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world??s most important food crops.  相似文献   

13.
Tocochromanols encompass a group of compounds with vitamin E activity essential for human nutrition. Structurally, natural vitamin E includes eight chemically distinct molecules: -, β-, γ- and δ-tocopherol; and -, β-, γ- and δ-tocotrienol. Symptoms caused by -tocopherol deficiency can be alleviated by tocotrienols. Thus, tocotrienols may be viewed as being members of the natural vitamin E family not only structurally but also functionally. Palm oil and rice bran oil represent two major nutritional sources of natural tocotrienol. Taken orally, tocotrienols are bioavailable to all vital organs. The tocotrienol forms of natural vitamin E possesses powerful hypocholesterolemic, anti-cancer and neuroprotective properties that are often not exhibited by tocopherols. Oral tocotrienol protects against stroke-associated brain damage in vivo. Disappointments with outcomes-based clinical studies testing the efficacy of -tocopherol need to be handled with caution and prudence recognizing the untapped opportunities offered by the other forms of natural vitamin E. Although tocotrienols represent half of the natural vitamin E family, work on tocotrienols account for roughly 1% of the total literature on vitamin E. The current state of knowledge warrants strategic investment into investigating the lesser known forms of vitamin E.  相似文献   

14.
Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(−/−) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs.  相似文献   

15.
Tocopherols and tocotrienols are present in mature seeds. Yet, little is known about the physiological role and the metabolism of these compounds during seed development. Here we present data on tocopherol and tocotrienol accumulation during seed development in Vitis vinifera L. cv. Albert Lavallée (Royal). This species was chosen for its ability to synthesize both tocopherols and tocotrienols. It is shown here for the first time that during seed development there are significant differences in localization and accumulation kinetics of tocopherols and tocotrienols. Tocopherols are found homogeneously dispersed throughout all tissues of the seed, in concentrations ranging from 20 to 100 microg tocopherol per g dry weight. Tocopherol levels decrease gradually during seed development. In contrast, tocotrienols are only found in the endosperm of the seeds, accumulating in a sigmoid fashion during the maturation period of seed development. Tocotrienol levels were found to be (54+/-7.4) microg/g dry seed in 90-day-old seeds of V. vinifera L. Furthermore, tocotrienol biosynthesis is demonstrated in these seeds during tocotrienol accumulation and in an endosperm fraction isolated at 75 days after flowering.  相似文献   

16.
Anti-inflammatory actions of the vitamin E fragment tocotrienol have not been described for microglia. Here, we screened palm α-, γ- and δ-tocotrienol isoforms and Tocomin® 50% (contains spectrum of tocotrienols and tocopherols) for their ability to limit nitric oxide (NO) production by BV2 microglia. Microglia were treated with varying doses of tocotrienols for 24 h and stimulated with 1 μg/ml lipopolysaccharide (LPS). All tocotrienol isoforms reduced NO release by LPS-stimulated microglia, with 50 μM being the most potent tocotrienol dose. Of the isoforms tested, δ-tocotrienol lowered NO levels the most, reducing NO by approximately 50% at 48 h post-LPS treatment (p < .05). None of the tocotrienol doses tested affected microglia viability.  相似文献   

17.
Tocopherols and tocotrienols are food ingredients that are believed to have a positive effect on health. The most studied property of both groups of compounds is their antioxidant action. Previously, we found that tocopherols and diverse tocopherol derivatives can inhibit the activity of human glutathione S-transferase P1-1 (GST P1-1). In this study we found that GST P1-1 is also inhibited, in a concentration-dependent manner, by alpha- and gamma-tocotrienol. The concentration giving 50% inhibition of GST P1-1 is 1.8 +/- 0.1 microM for alpha-tocotrienol and 0.7 +/- 0.1 microM for gamma-tocotrienol. This inhibition of GST P1-1 is noncompetitive with respect to both substrates CDNB and GSH. We also examined the 3D structure of GST P1-1 for a possible tocopherol/tocotrienol binding site. The enzyme contains a very hydrophobic pit-like structure where the phytyl tail of tocopherols and tocotrienols could fit in. Binding of tocopherol and tocotrienol to this hydrophobic region might lead to bending of the 3D structure. In this way tocopherols and tocotrienols can inhibit the activity of the enzyme; this inhibition can have far-reaching implications for humans.  相似文献   

18.
Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops.  相似文献   

19.
The effect of genotypes and texture on the content of proteins in maize grains was examined by assessing absolute amounts of six protein fractions in the whole endosperms of four wild‐type lines with high protein content and four quality protein maize (QPM) varieties and for hand‐dissected hard and soft endosperm regions from eight other lines. As previously reported for six wild‐type lines and their opaque‐2(o2) versions, zeins were predominant for all genetic backgrounds and all types of endosperms. From these data and others the amounts of zeins and true proteins (crude proteins free of non‐protein nitrogen) in developing and mature endosperms of wild‐type lines were correlated. The data points for zeins from hard endosperms lay between the regression line and the upper limit of confidence area. Those for zeins from soft endosperms were located at the lower part of confidence area and on a level with the points corresponding to the most immature endosperms. Furthermore, some data points for zeins from o2 and QPM samples lay near the lower limit while the others were outside the confidence area. This suggested an initial zein accumulation dependent on the genotype at a low relative rate, followed by an accumulation at higher rate. The conditions used for isolating and quantitating zeins are discussed.  相似文献   

20.
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley and certain types of nuts and grains. Vegetable oils provide the best sources of these vitamin E forms, particularly palm oil and rice bran oil contain higher amounts of tocotrienols. Other sources of tocotrienols include grape fruit seed oil, oats, hazelnuts, maize, olive oil, buckthorn berry, rye, flax seed oil, poppy seed oil and sunflower oil. Tocotrienols are of four types, viz. alpha (α), beta (β), gamma (γ) and delta (δ). Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. A number of researchers have developed methods for the extraction, analysis, identification and quantification of different types of vitamin E compounds. This article constitutes an in-depth review of the chemistry and extraction of the unsaturated vitamin E derivatives, tocotrienols, from various sources using different methods. This review article lists the different techniques that are used in the characterization and purification of tocotrienols such as soxhlet and solid–liquid extractions, saponification method, chromatography (thin layer, column chromatography, gas chromatography, supercritical fluid, high performance), capillary electrochromatography and mass spectrometry. Some of the methods described were able to identify one form or type while others could analyse all the analogues of tocotrienol molecules. Hence, this article will be helpful in understanding the various methods used in the characterization of this lesser known vitamin E variant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号