首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Ionizing radiation and oxidizing agent like H2O2 were used to degrade chitosan (CS) and its derivatives; N-maleoylchitosan (NMCS), and N-phthaloylchitosan (NPhCS). The structure changes were detected using gel permeation chromatography (GPC). The results revealed that ionizing radiation degraded CS, MNCS, NPhCS and altered their molecular weights and antioxidant activity. The higher the irradiation dose, the lower the molecular weight and the higher antioxidant activity. The addition of irradiated CS and NMCS to minced chicken resulted in highly significant reduction in malondialdehyde (MDA) content (50 and 70%, respectively) if compared with the control. The irradiated NMCS toxicity study did not show strong proliferative effect at small concentrations or cytotoxic effects at higher concentrations. The obtained results suggested that CS and NMCS could be used as natural antioxidant for improving the oxidative deterioration of minced chicken during refrigerated storage.  相似文献   

2.
利用60Co-γ射线对崮体透明质酸进行辐射,探讨60Co-γ射线对固体透明质酸分子量和黏度特性及抗氧化性的影响。结果表明:透明质酸的分子量和黏度特性随辐照剂量的增加而降低;对羟自由基(OH·)及超氧阴离子自由基(O2·)清除作用随着剂量的增大逐渐减弱,对DPPH·自由基清除作用和还原能力随着剂量的增大逐渐增强;辐照前后透明质酸外观品质没有明显的变化,流动性增强;辐照对透明质酸的紫外光谱结构没有明显的改变。  相似文献   

3.
研究低聚壳聚糖(COS)与α-丙氨酸/天冬酰胺的美拉德反应,考察了两个体系(低聚壳聚糖的羰基与氨基的物质量比均为1∶1)的pH、吸光度和荧光值的变化。醇沉法提取低聚壳聚糖衍生物CA和CN。对两种衍生物进行红外表征和分子量测定,并研究其对超氧阳离子O2-.、DPPH自由基的清除能力以及还原能力。结果显示:抗氧化能力强弱次序为CA>CN>COS,即美拉德反应后低聚壳聚糖衍生物抗氧化能力得到显著提高,且CA的抗氧化活性优于CN,表明与小分子氨基酸进行美拉德反应制得的壳聚糖衍生物具有更好的抗氧化性。  相似文献   

4.
研究低聚壳聚糖与木糖的美拉德反应,考察了两种体系(低聚壳聚糖与木糖的质量比分别为1∶1和1∶3)反应过程中pH、吸光度及荧光值的变化,醇沉法提取4 h和8 h的低聚壳聚糖美拉德反应衍生物,分别为CX11-4、CX13-4、CX11-8和CX13-8。对衍生物进行红外表征和分子量测定,并研究其对羟基自由基.OH和DPPH的清除能力以及还原能力。结果显示:壳聚糖衍生物的抗氧化能力都明显优于低聚壳聚糖,抗氧化活性顺序为CX13-4>CX11-4,CX11-8>CX13-8。可见,壳聚糖美拉德衍生物的抗氧化活性不仅与反应物的比例有关,还与反应的时间有关。  相似文献   

5.
低聚壳聚糖与邻苯二甲酸酐酰化得到三种取代度不同的N-邻苯二甲酸酐酰低聚壳聚糖NPCOSA、NPCOSB和NPCOSC,取代度分别为0.330、.55和0.65。通过红外光谱对其结构进行表征。并考察了其抗氧化性能。结果表明:COS的抗氧化性能最强;随着取代度的增加,N-邻苯二甲酰低聚壳聚糖对超氧阴离子的清除能力逐渐升高;而对DPPH的清除能力以及还原能力呈逐渐下降趋势;对羟基自由基的清除顺序大小依次为NPCOSB>NPCOSA>NPCOSC,即NPCOSB清除羟基自由基的的能力最佳。  相似文献   

6.
Factors affecting the free radical scavenging behavior of chitosan sulfate   总被引:1,自引:0,他引:1  
Scavenging activity of hydroxyethyl chitosan sulfate (HCS) against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and carbon-centered radical species were studied using electron spin resonance (ESR) spectroscopy. In addition, its antioxidant activity to retard lipid peroxidation was also evaluated in a linoleic acid model system. HCS could scavenge DPPH (33.78%, 2.5 mg/mL) and carbon-centered radicals (67.74%, 0.25 mg/mL) effectively. However, chitosan sulfate did not exhibit any scavenging activity against hydroxyl radicals, but increased its generation. This was different from the published literature and was presumed due to the loss of chelating ability on Fe2+. This assumption could further confirm from the results obtained for Fe2+-ferrozine method that upon sulfation chitooligosaccharides lost its chelation properties. Therefore, HCS can be identified as antioxidant that effectively scavenges carbon centered radicals to retard lipid peroxidation.  相似文献   

7.
A novel biopolymer-based antioxidant, chitosan conjugated with gallic acid (chitosan galloylate, chitosan-GA), is proposed. Electron paramagnetic resonance (EPR) demonstrates a wide range of antioxidant activity for chitosan-GA as evidenced from its reactions with oxidizing free radicals, that is, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), horseradish peroxidase (HRP)-H2O2, carbon-centered alkyl radicals, and hydroxyl radicals. The EPR spectrum of the radical formed on chitosan-GA was attributed to the semiquinone radical of the gallate moiety. The stoichiometry and effective concentration (EC50) of the DPPH free radical with chitosan-GA show that the radical scavenging capacity is maintained even after thermal treatment at 100 °C for an hour. Although the degree of substitution of GA on chitosan was about 15%, its antioxidant capacity, that is, the reaction with carbon-centered and hydroxyl radicals, is comparable to that of GA.  相似文献   

8.
N-substituted chitosan and quaternized chitosan were synthesized and their antioxidant activity against hydroxyl radicals was assessed, respectively. Compared with the antioxidant activity of chitosan, the results indicated that the two kinds of chitosan derivatives had different scavenging ability on hydroxyl radicals, which should be related to the form of amido in the two kinds of chitosan derivatives.  相似文献   

9.
Xing R  Liu S  Guo Z  Yu H  Wang P  Li C  Li Z  Li P 《Bioorganic & medicinal chemistry》2005,13(5):1573-1577
The antioxidant potency of different molecular weight (DMW) chitosan and sulfated chitosan derivatives was investigated employing various established in vitro systems, such as superoxide (O(2)(.-))/hydroxyl ((-.)OH) radicals scavenging, reducing power, iron ion chelating. As expected, we obtained several satisfying results, as follows: firstly, low molecular weight chitosan had stronger scavenging effect on O(2)(.-) and (-.)OH than high molecular weight chitosan. For example the O(2)(.-) scavenging activity of low molecular weight chitosan (9 kDa) and high molecular weight chitosan (760 kDa) were 85.86% and 35.50% at 1.6 mg/mL, respectively. Secondly, comparing with DMW chitosan, DMW sulfated chitosans had the stronger inhibition effect on O(2)(.-). At 0.05 mg/mL, the scavenging activity on O(2)(.-) reached 86.26% for low molecular weight chitosan sulfate (9 kDa), but that of low molecular weight chitosan (9 kDa) was 85.86% at 1.6 mg/mL. As concerning chitosan and sulfated chitosan of the same molecular weight, scavenging activities of sulfated chitosan on superoxide and hydroxyl radicals were more pronounced than that of chitosan. Thirdly, low molecular weight chitosan sulfate had more effective scavenging activity on O(2)(.-) and (-.)OH than that of high molecular weight chitosan sulfate. Fourthly, DMW chitosans and sulfated chitosans were efficient in the reducing power, especially LCTS. Their orders were found to be LCTS>CTS4>HCTS>CTS3>CTS2>CTS1>CTS. Fifthly, CTS4 showed more considerable ferrous ion-chelating potency than others. Finally, the scavenging rate and reducing power of DMW chitosan and sulfated derivatives increased with their increasing concentration. Moreover, change of DMW sulfated chitosans was the most pronounced within the experimental concentration. However, chelating effect of DMW chitosans were not concentration dependent except for CTS4 and CTS1.  相似文献   

10.
对κ-卡拉胶进行酸降解得到三种卡拉胶低聚糖,并进一步与苯二甲酰基合成制得三种分子量分别为1450、2520和3430的κ-卡拉胶邻苯二甲酰衍生物(LA、LB和LC)。对产物进行IR表征并对其取代度(DS)进行测定,并检测了产物对羟基自由基.OH、DPPH自由基和过氧化氢的清除活性以及还原能力。结果表明,上述三种κ-卡拉胶邻苯二甲酰衍生物的抗氧化能力强弱顺序依次为:LC>LA>LB,这可能与衍生物的羟基含量、取代基团的性质以及取代度等因素有关。  相似文献   

11.
Three polysaccharide fractions (TPS1, TPS2 and TPS3) with different molecular weights were obtained using ultra filtration membranes from crude tea polysaccharide (CTPS) extracted from abandoned lower grade tea leaves. Each fraction contained different contents of neutral sugar, uronic acid, protein, and total polyphenols. These differences provided basis for the antioxidant and free radical scavenging activity of these polysaccharide fractions. The molecular weights of TPS1, TPS2, and TPS3 were around 2.40×10(5) Da, 2.14×10(4) Da, and 2.46×10(3) Da, respectively. In general, TPS1 and CTPS had stronger antioxidant activity, TPS2 and TPS3 had lower antioxidant activity. TPS1 had higher activity for DPPH and lipid per oxidation inhibition. But it had lower capacity for reducing power and metal chelating. This might be due to its higher content of hexuronic acid and larger molecular weight. The order of inhibition activity of lipid per oxidation of various polysaccharide fractions was the same as DPPH radical scavenging activity, as well as the order of metal chelating activity of various polysaccharide fractions similar to hydroxyl radical scavenging activity, which demonstrated that hydroxyl radical scavenging activity of polysaccharide relied heavily on the Fe(2+) metal chelating to decrease the generation of hydroxyl radical.  相似文献   

12.
Chitosans were prepared by H2O2 oxidative depolymerization from squid pens with low molecular weights (LMW) of 13,025, 7011, 4169, 2242 and 963 Da. The bile acid binding capacities and antioxidant properties of LMW chitosans were studied in vitro. LMW chitosans exhibited stronger bile acid binding capacities than that of chitosan. The scavenging ability of LMW chitosans against DPPH radicals improved with increasing concentration, and EC50 values were below 1.3 mg/mL. The EC50 values of LMW chitosans against hydroxyl radicals ranged from 0.93 to 3.66 mg/mL. All LMW chitosans exhibited a strong ferrous ion chelating effect and reducing power. At 1 mg/mL, the scavenging ability of chitosan-963 towards superoxide radicals was 67.76%. These results indicated that LMW chitosans which have stronger bile acid binding capacity and antioxidant activities may act as potential antioxidants in vitro.  相似文献   

13.
Gallic acid and its derivatives are a group of naturally occurring polyphenol antioxidants which have recently been shown to have potential healthy effects. In order to understand the relationship between the structures of gallic acid derivatives, their antioxidant activities, and neuroprotective effects, we examined their free radical scavenging effects in liposome and anti-apoptotic activities in human SH-SY5Y cell induced by 6-hydrodopamine autooxidation. It was found that these polyphenol antioxidants exhibited different hydrophobicity and could cross through the liposome membrane to react with 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical in a time and dose-dependent manner. At the same time, the structure-antioxidant activity relationship of gallic acid derivatives on scavenging DPPH free radical in the liposome was also analyzed based on theoretical investigations. Analysis of cell apoptosis, intracellular GSH levels, production of ROS and the influx of Ca(2+) indicated that the protective effects of gallic acid derivatives in cell systems under oxidative stress depend on both their antioxidant capacities and hydrophobicity. However, the neuroprotective effects of gallic acid derivatives seem to depend more on their molecular polarities rather than antioxidant activities in the human SH-SY5Y cell line. In conclusion, these results reveal that compounds with high antioxidant activity and appropriate hydrophobicity are generally more effective in preventing the injury of oxidative stress in neurodegenerative diseases.  相似文献   

14.
Acetylation of pumpkin (Cucurbita pepo, lady godiva variety) polysaccharide using acetic anhydride with pyridines as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale. Furthermore, antioxidant activities and cytoprotective effects of pumpkin polysaccharide and its acetylated derivatives were investigated employing various established in vitro systems. Results showed that addition of pyridine as catalyst could increase the degree of substitution, whereas volume of acetic anhydride had little effect. The acetylated polysaccharides in DPPH scavenging radical activity assay, superoxide anion radical activity assay and reducing power assay exhibited higher antioxidant activity than that of unmodified polysaccharide. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by pumpkin polysaccharide and its acetylated derivatives and the derivatives presented higher protective effects. On the whole, acetylated polysaccharide showed relevant antioxidant activity both in vitro and in a cell system.  相似文献   

15.
Three new kinds of 1,3,5-thiadiazine-2-thione derivatives of chitosan with two different molecular weight (SATTCS1, SATTCS2, TITTCS1, TITTCS2, CITTCS1 and CITTCS2) have been prepared. Their structures were characterized by IR spectroscopy. The substitution degree of derivatives calculated by elemental analyses was 0.47, 0.42, 0.41, 0.38, 0.41 and 0.36, respectively. The result shows that substitution degree of derivatives was higher with lower molecular weight. The antioxidant activity was studied using an established system, such as hydroxyl radical scavenging, superoxide radical scavenging and reducing power. Antioxidant activity of the 1,3,5-thiadiazine-2-thione derivatives of chitosan were stronger than that of chitosans and antioxidant activity of low molecular weight derivatives were stronger than that of high molecular weight derivatives. It is a potential antioxidant in vitro.  相似文献   

16.
Antioxidant activity in α- and β-chitosan at a wide range of molecular weight (Mw) and chitosan concentration (CS) was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing ability, chelating ability, and hydroxyl radical scavenging activity. The form of chitosan (FC) had significant (P <0.05) effect on all measurements except DPPH radical scavenging activity, and antioxidant activity was dependent on Mw and CS. High Mw (280–300 kDa) of β-chitosan had extremely lower half maximal effective concentrations (EC50) than α-chitosan in DPPH radical scavenging activity and reducing ability. The 22–30 kDa of α- and β-chitosan showed significantly (P <0.05) higher activities in DPPH radical scavenging, reducing ability, and hydroxyl radical scavenging than samples at other Mw, while chelating ability was the highest in 4–5 kDa chitosan. CS had significant effect on all measurements and the effect was related to Mw. The antioxidant activity of 280–300 kDa chitosan was affected by coil-overlap concentrations (C1) in the CS range of 4–10 mg/mL, forming entanglements. Reducing ability and hydroxyl radical scavenging activity were more predominant action in antioxidant activity of chitosan as shown by the lower EC50 values than those in other antioxidant measurements.  相似文献   

17.
Antioxidant activity of N-carboxymethyl chitosan oligosaccharides   总被引:1,自引:0,他引:1  
Three N-carboxymethyl chitosan oligosaccharides (N-CMCOSs) with different degrees of substitution (NA: 0.28, NB: 0.41, and NC: 0.54, respectively) were prepared by the control of the amount of glyoxylic acid in the etherification process of chitosan oligosaccharide (COS). Their antioxidant activities were evaluated by the scavenging of 1,1-diphenyl-2-picrylhrazyl radical (DPPH) radical, superoxide anion and determination of reducing power. With the increasing of substituting degree, the scavenging activity of N-CMCOSs against DPPH radical decreased and reducing power increased. As for superoxide anion scavenging, the order is NB>NC>NA. The difference may be related to the different radical scavenging mechanisms and donating effect of substituting carboxymethyl group.  相似文献   

18.
Focusing on alpha-pyridoin (1, 1,2-di(2-pyridyl)-1,2-ethenediol) as the lead compound of the novel antioxidative enediol, we synthesized 5,5'- or 6,6'-bis-substituted derivatives of 1 from disubstituted pyridines. The antioxidant activity of 1 and its synthetic derivatives 2-7 was evaluated by DPPH (1,1-diphenyl-2-picrylhydrazyl radical) scavenging assay and inhibition of lipid peroxidation. In the DPPH assay, 1 exhibited an activity stronger than that of ascorbic acid, and 5,5'-dimethyl-(5) or 5,5'-dimethoxy-substituted derivatives (6) exhibited more potent activity than 1. The DPPH scavenging activities of alpha-pyridoins were correlated with their oxidation potential and thus the electron density of enediol. 5 and 6 effectively inhibited lipid peroxidation in the rat liver microsome/tert-butyl hydroperoxide system. Therefore, 5 and 6 serve as good candidates for a pharmacologically useful enediol antioxidant.  相似文献   

19.
为了探讨电子束辐照对透明质酸功能及结构特性的影响,选择5、10、20、40、80 、100和150 kGy的电子束辐照固体透明质酸,测定透明质酸辐照前后分子量、特性粘度 、pH值、抗氧化性、紫外光谱、红外光谱、电镜图片的变化.结果表明,辐照降低透明 质酸的分子量、特性粘度、pH值;透明质酸在辐照前后的吸收特征峰没有显著的改变, 吸收强度增强;透明质酸形状随着辐照剂量的升高,由块状逐渐变成颗粒状;透明质酸 对DPPH·自由基的清除作用和还原力随着辐照剂量的增大逐渐增强.电子束辐照对透明 质酸分子结构和功能有一定的影响,但对其一级结构没有影响.  相似文献   

20.
为获得高效抗氧化菌株,采用直接提取方式从20个大型真菌菌株菌丝体培养液中提取抗氧化活性物质,采用邻苯三酚自氧化法、水杨酸法、DPPH法测定各菌株菌丝体培养粗提液对超氧阴离子自由基(O2)、羟基自由基.(OH)及1,1-二苯代苦味酰基自由基(DPPH-)的清除作用。结果表明:各菌株菌丝体培养粗提液对(O2)、.OH及DPPH-均有一定的清除作用,其中菌株NG菌丝体培养粗提液对OH-的清除效果最好,清除率为75.56%;菌株02菌丝体培养粗提液对(O2-)的清除效果最好,清除率为37.51%;菌株EG菌丝体培养粗提液对DPPH-清除效果最好,清除率为66.91%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号