首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
转染秀丽隐杆线虫fat-1基因后的哺乳动物具备了将n-6多不饱和脂肪酸(PUFAs)转化为n-3 PUFAs的能力,可降低动物机体的n-6/n-3 PUFAs比例.n-3 PUFAs有益于人类健康,可减少多种相关疾病发生的风险,但人体内不能合成n-3 PUFAs,其必须依赖于富含n-3 PUFAs的食品,fat-1转基因动物将成为人类必需的n-3 PUFAs的重要来源.对fat-1及其转基因动物的研究现状进行综述.  相似文献   

2.
美国哈佛大学医学院副教授康景轩博士在2004年2月5Et出版的《Nature》发表了他的一项重大研究成果:利用基因工程技术将秀丽隐杆线虫(Caenorhabditiselegans)的fat-1基因植入小鼠体内,即可将小鼠体内的n-6脂肪酸转化为n-3脂肪酸。他先将fat-1基因转入一组小鼠体内,然后以另一组野生型小鼠作  相似文献   

3.
改变细胞膜的脂肪酸组成可促进乳腺癌细胞凋亡   总被引:1,自引:1,他引:0  
目的: 研究n-6脂肪酸脱氢酶 fat-1基因在人乳腺癌细胞内的表达,改变细胞膜脂肪酸组成,对乳腺癌细胞的凋亡作用。方法: 构建含有fat-1 基因的重组腺病毒载体 (Ad.GFP.fat-1),通过包装细胞系(293)产生的腺病毒,感染人乳腺癌细胞MCF-7。提取细胞的总RNA,以fat-1的反义mRNA 作探针,用Northern Blot检测fat-1 基因在MCF-7细胞内的表达。MTT法分析fat-1 基因对MCF-7细胞增殖的影响,凋亡染色试剂盒检测细胞的凋亡。气相色谱仪分析对MCF-7细胞的n-6 PUFAs/n-3 PUFAs含量影响。结果: 通过基因重组技术,得到预期的重组病毒;fat-1 基因在人乳腺癌细胞MCF-7 中能有效异源表达,2天后,可检测到fat-1 mRNA的条带。与对照细胞相比,fat-1基因有效地抑制了MCF-7细胞的增殖(23%,p<0.05),促进了凋亡(增加35%);同时降低了人乳腺癌细胞MCF-7细胞膜n-6 PUFAs/n-3 PUFAs的比率。结论: 腺病毒介导的fat-1 基因能在人乳腺癌细胞MCF-7内有效异源表达,且抑制了MCF-7细胞的增殖。机理为降低了细胞膜的n-6 PUFAs/n-3 PUFAs的比率。  相似文献   

4.
目的:研究n-6脂肪酸脱氢酶fat-1基因在人乳腺癌细胞内的表达,改变细胞膜脂肪酸组成,对乳腺癌细胞的凋亡作用.方法:构建含有fat-1基因的重组腺病毒载体(Ad.GFP.fat-1),通过包装细胞系(293)产生的腺病毒,感染人乳腺癌细胞MCF-7.提取细胞的总RNA,以fat-1的反义mRNA作探针,用Northern blot检测fat-1基因在MCF-7细胞内的表达.MTT法分析fat-1基因对MCF-7细胞增殖的影响,凋亡染色试剂盒检测细胞的凋亡.气相色谱仪分析对MCF-7细胞的n-6 PUFAs/n-3 PUFAs含量影响.结果:通过基因重组技术,得到预期的重组病毒;fat-1基因在人乳腺癌细胞MCF-7中能有效异源表达,2d后,可检测到fat-1 mRNA的条带.与对照细胞相比,fat-1基因有效地抑制了MCF-7细胞的增殖(23%,p<0.05),促进了凋亡(增加35%);同时降低了人乳腺癌细胞MCF-7细胞膜n-6 PUFAs/n-3 PUFAs的比率.结论:腺病毒介导的fat-1基因能在人乳腺癌细胞MCF-7内有效异源表达,且抑制了MCF-7细胞的增殖.机理为降低了细胞膜的n-6 PUFAs/n-3 PUFAs的比率.  相似文献   

5.
脂肪酸脱氢酶3(fatty acid desaturase 3,fad3)是高等植物细胞中一种催化n-6多不饱和脂肪酸转化为n-3多不饱和脂肪酸的酶。该研究将胡麻fad3b基因转染小鼠C2C12细胞,转基因细胞中的n-6多不饱和脂肪酸含量显著降低,n-3多不饱和脂肪酸含量显著升高。Fad3b转基因小鼠中,fad3b基因在不同组织器官的m RNA水平与蛋白质水平的表达趋势并不一致。在fad3b m RNA水平上,肝脏中最高,骨骼肌、脂肪、脑和心脏中较低;在脂肪酸水平上,骨骼肌、脑和肝脏等组织的n-6/n-3显著降低,而脂肪、卵巢和睾丸组织中的变化不显著。该研究结果提示,胡麻来源的fad3b基因能够在转基因小鼠中正常发挥功能,促使n-6向n-3多不饱和脂肪酸转化,fad3b转基因小鼠模型可能比fat1小鼠在基因功能专一性以及动物生殖健康等方面更有优势。  相似文献   

6.
目的:构建转基因小鼠模型的载体并检测在人肝癌HepG2中的表达效果.方法:将n-3多不饱和脂肪酸脱氢酶基因fat-1插入到真核表达载体(pcDNA3.1(+)myc-HisA)中,构建重组表达载体pcDNA3.1(+)myc-His A-fat-1,用脂质体介导的方法转染到人肝癌HepG2细胞中,RT-PCR检测fat-l基因的表达,MTT法分析fat-l基因对HepG2细胞增殖的影响,气相色谱分析检测fat-l基因对HepG2细胞n-6/n-3多聚不饱和脂肪酸(PUFAs)比例的影响.结果:成功地构建了真核表达裁体peDNA3.1(+)myc-HisA-fat-1,并能在HepG2细胞内有效异源表达.48h后可检测到fat-l mRMA的条带.与对照细胞相比,fat-l基因有效地抑制了人肝癌细胞HepG2细胞的增殖(70%,p<0.01),降低了n-6/n-3 PUFAs比例.结论:pcDNA3.1(+)myc-His A-fat-l重组载体构建成功并能在肝癌细胞中有效的表达,可以作为下一步转基因小鼠的合适载体.  相似文献   

7.
DHA(22:6n-3)、EPA(20:5n-3)和ARA(20:4n-6)三种长链多不饱和脂肪酸在生物体内活性最强,它们在促进大脑发育和功能维持以及在预防和治疗心血管疾病、炎症、癌症等多种疾病方面有着重要作用。然而,尽管哺乳动物体内有完整的长链多不饱和脂肪酸合成酶系,但哺乳动物合成这些长链多不饱和脂肪酸的效率很低而主要依赖于食物获取。本研究应用转基因方法,将哺乳动物来源的Δ6和Δ5脂肪酸去饱和酶以及Δ6和Δ5脂肪酸延长酶这4种酶的编码基因构建成为一个多基因表达载体,然后转染哺乳动物细胞HEK293T,实现了4个目的基因的超表达,再通过气质联用(GC-MS)分析证实了DHA、EPA和ARA等长链多不饱和脂肪酸的合成效率及水平显著增加,DHA的水平更是提高了2.5倍。由此可见,哺乳动物具有某种抑制长链多不饱和脂肪酸高水平合成的机制,但通过Δ6和Δ5脂肪酸去饱和酶以及Δ6和Δ5脂肪酸延长酶的超表达,能够打破哺乳动物这种抑制机制,从而显著提高DHA、EPA、ARA等的合成水平。同时,本研究的思路也为在转基因动物中生产长链多不饱和脂肪酸提供了重要的启示。  相似文献   

8.
n-3多不饱和脂肪酸(n-3 PUFAs)是一种重要的营养物质,其具有多种生理作用,可作为一种基因表达的调控物直接和独立地调控基因表达,并广泛地影响着动物体内有关代谢及生理病理现象。主要从调节机制方面对n-3 PUFAs对机体脂质代谢和炎症-免疫的影响进行综述。  相似文献   

9.
将C.elegans n-6脂肪酸去饱和酶基因fat-1的cDNA插入到腺病毒的穿梭载体pAd-CMV中,并与骨架载体同源重组,构建腺病毒重组体(Ad.GFP.fat1),通过包装细胞系(293)产生重组腺病毒,感染原代培养的大鼠皮层细胞.在显微镜下观察、细胞增殖试剂盒(MTT)和凋亡染色试剂盒分析fat-1基因对大鼠皮层细胞凋亡的影响,核糖核酸酶保护性分析,检测fat-1基因在大鼠皮层细胞内的表达,酶联免疫分析花生四烯酸类(Eicosanoids)前列腺素(Prostaglandin E2)的含量.结果表明,通过基因重组技术,得到预期的重组病毒;fat-1基因在原代培养的大鼠皮层细胞中能有效异源表达,2d后,可检测到fat-1 mRNA的条带,与对照Ad.GFP细胞相比,fat-1基因明显抑制了大鼠皮层细胞因诱导产生的凋亡(35%),受保护细胞的前列腺素含量也明显地减少(30%).  相似文献   

10.
哺乳动物因为缺乏Δ-12和ω-3脂肪酸脱氢酶,不能自身合成必需的多不饱和脂肪酸.目前,通过转基因技术在哺乳动物体内表达ω-3脂肪酸脱氢酶,能将长链的n-6多不饱和脂肪酸转化成n-3多不饱和脂肪酸,造成体内长链的n-6多不饱和脂肪酸含量显著减低.本研究通过自我剪切2A肽介导Δ-12和ω-3脂肪酸脱氢酶(FAT-2和FAT-1)以及人过氧化氢酶(human catalase,hCAT)在小鼠的肌肉同时表达.结果表明,转基因小鼠肌肉中长链n-3多不饱和脂肪酸含量提高2.6倍,长链n-6多不饱和脂肪酸含量没有显著变化,而n-6/n-3比例显著降低(P < 0.01).同时蛋白质印迹检测到人过氧化氢酶hCAT在小鼠的肌肉组织中表达,且过氧化氢酶活性比野生型小鼠显著提高(P < 0.01).  相似文献   

11.
Previous studies have shown that n-3 polyunsaturated fatty acids (PUFAs) can exert an antiapoptotic effect on neurons. The present study was designed to investigate whether the Caenorhabditis elegans fat-1 gene encoding an n-3 fatty acid desaturase (an enzyme that converts n-6 PUFAs to corresponding n-3 PUFAs) can be expressed functionally in rat cortical neurons and whether its expression can change the ratio of n-6 : n-3 fatty acids in the cell membrane and exert an effect on neuronal apoptosis. Infection of primary rat cortical cultures with Ad-fat-1 resulted in high expression of the fat-1 gene. Lipid analysis indicated a decrease in the ratio of n-6 : n-3 PUFAs from 5.9 : 1 in control cells, to 1.45 : 1 in cells expressing the n-3 fatty acid desaturase. Accordingly, the levels of prostaglandin E2, an eicosanoid derived from n-6 PUFA, were significantly lower in cells infected with Ad-fat-1 when compared with control cells. Finally, there was a significant inhibition of growth factor withdrawal-induced apoptotic cell death in neurons expressing the fat-1 gene. These results demonstrate that expression of the fat-1 gene can inhibit apoptotic cell death in neurons and suggest that the change in the n-6 : n-3 fatty acid ratio may play a key role in this protective effect.  相似文献   

12.
Polyunsaturated fatty acids (PUFAs) are essential structural components of all cell membranes and, more so, of the central nervous system. Several studies revealed that n-3 PUFAs possess anti-inflammatory actions and are useful in the treatment of dyslipidemia. These actions explain the beneficial actions of n-3 PUFAs in the management of cardiovascular diseases, inflammatory conditions, neuronal dysfunction, and cancer. But, the exact molecular targets of these beneficial actions of n-3 PUFAs are not known. Mice engineered to carry a fat-1 gene from Caenorhabditis elegans add a double bond into an unsaturated fatty acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 eicosapentaenoic acid and docosapentaenoic acid specifically in the brain and a reduction in n-6 fatty acids of these mice that can be used to evaluate the actions of n-3 PUFAs. Gene expression profile, RT-PCR and protein microarray studies in the hippocampus and whole brain of wild-type and fat-1 transgenic mice revealed that genes and proteins concerned with inflammation, apoptosis, neurotransmission, and neuronal growth and synapse formation are specifically modulated in fat-1 mice. These results may explain as to why n-3 PUFAs are of benefit in the prevention and treatment of diseases such as Alzheimer's disease, schizophrenia and other diseases associated with neuronal dysfunction, low-grade systemic inflammatory conditions, and bronchial asthma. Based on these data, it is evident that n-3 PUFAs act to modulate specific genes and formation of their protein products and thus, bring about their various beneficial actions.  相似文献   

13.
Livestock meat is generally low in n-3 polyunsaturated fatty acids (PUFAs), which are beneficial to human health. An alternative approach to increasing the levels of n-3 PUFAs in meat is to generate transgenic livestock animals. In this study, we describe the generation of cloned pigs that express the cbr-fat-1 gene from Caenorhabditis briggsae, encoding an n-3 fatty acid desaturase. Analysis of fatty acids demonstrated that the cbr-fat-1 transgenic pigs produced high levels of n-3 fatty acids from n-6 analogs; consequently, a significantly reduced ratio of n-6/n-3 fatty acids was observed. We demonstrated that the n-3 desaturase gene from C. briggsae was functionally expressed, and had a significant effect on the fatty acid composition of the transgenic pigs, which may allow the production of pork enriched in n-3 PUFAs.  相似文献   

14.
Zhu G  Chen H  Wu X  Zhou Y  Lu J  Chen H  Deng J 《Transgenic research》2008,17(4):717-725
The functions of polyunsaturated fatty acids (PUFAs) have been widely investigated. In mammals, levels of n-3 PUFAs are relatively low compared to those of n-6 PUFAs. Either a lack of n-3 PUFAs or an excess of n-6 PUFAs could potentially cause health problems in humans. Hence, methods to increase the amount of n-3 PUFAs in diet have been intensely sought. In this study, we demonstrated that the n-3 fatty acid desaturase gene (sFat-1) synthesized from revised and optimized codons based on roundworm Caenorhabditis briggsae genomic gene for enhanced expression in mammals was successfully expressed in Chinese hamster ovary (CHO) cells and significantly elevated cellular n-3 PUFA contents. We generated sFat-1 transgenic mice by introducing mammal expression vector DNAs containing the sFat-1 gene into regular mice through the method of microinjection. Fatty acid compositions were then altered and the levels of docosahexaenoic acid (DHA, 22:6n-3) and docosapentaenoic acid (DPA, 22:5n-3) were greatly increased in these transgenic mice. Various types of tissues in the transgenic mice produced many types of n-3 PUFAs, such as alpha-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), DPA, and DHA, for example, muscle tissues of the transgenic mice contained 12.2% DHA, 2.0% DPA, and 23.1% total n-3 PUFAs. These research results demonstrated that the synthesized sFat-1 gene with modified and optimized codons from C. briggsae possess functional activity and greater capability of producing n-3 PUFAs, especially DHA and DPA, in transgenic mice.  相似文献   

15.
Polyunsaturated fatty acids (PUFAs) play an important role in both induction and prevention of carcinogenic process. It is well known that several types of neoplastic cells show decreased total PUFA content, contributing to their resistance to chemotherapy and lipid peroxidation. In the light of this, human lung cancer A549 cells, with low PUFA content, were exposed to arachidonic or docosahexaenoic acid to investigate the effect of n-6 and n-3 PUFAs on growth and elucidate underlying mechanisms. The bulk of the results showed that both n-6 PUFAs and n-3 PUFAs decrease human lung-tumor cell growth in a concentration-dependent manner, inducing cell death mainly evident at 100microM concentration. The mechanism underlying the antiproliferative effect of n-6 and n-3 PUFAs appeared to be the same, involving changes in fatty acid composition of biomembranes, production of cytostatic aldehydes derived from lipid peroxidation and able to affect DNA-binding activity of AP-1, and induction of PPAR. From these results it may be hypothesized that n-6 PUFAs, like n-3 PUFAs, are able to inhibit tumor growth.  相似文献   

16.
Sudden cardiac death remains one of the most serious medical challenges in Western countries. Increasing evidence in recent years has demonstrated that the n-3 polyunsaturated fatty acids (PUFAs) can prevent fatal ventricular arrhythmias in experimental animals and probably in humans. Dietary supplement of fish oils or intravenous infusion of the n-3 PUFAs prevents ventricular fibrillation caused by ischemia/reperfusion. Similar antiarrhythmic effects of these fatty acids are also observed in cultured mammalian cardiomyocytes. Based on clinical observations and experimental studies in vitro and in vivo, several mechanisms have been postulated for the antiarrhythmic effect of the n-3 PUFAs. The data from our laboratory and others have shown that the n-3 PUFAs are able to affect the activities of cardiac ion channels. The modulation of channel activities, especially voltage-gated Na+ and L-type Ca2+ channels, by the n-3 fatty acids may explain, at least partially, the antiarrhythmic action. It is not clear, however, whether one or more than one mechanism involves the beneficial effect of the n-3 PUFAs on the heart. This article summarizes our recent studies on the specific effects of the n-3 PUFAs on cardiac ion channels. In addition, the effect of the n-3 PUFAs on the human hyperpolarization-activated cyclic-nucleotide-modulated channel is presented.  相似文献   

17.
The extent of mitochondrial and peroxisomal contribution to beta-oxidation of 18-, 20- and 24-carbon n-3 and n-6 polyunsaturated fatty acids (PUFAs) in intact rat hepatocytes is not fully clear. In this study, we analyzed radiolabeled acid soluble oxidation products by HPLC to identify mitochondrial and peroxisomal oxidation of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs. Mitochondrial fatty acid oxidation produced high levels of ketone bodies, tricarboxylic acid cycle intermediates and CO(2), while peroxisomal beta-oxidation released acetate. Inhibition of mitochondrial fatty acid oxidation with 2-tetradecylglycidic acid (TDGA), high amounts of [14C]acetate from oxidation of 24:5n-3, 18- and 20-carbon PUFAs were observed. In the absence of TDGA, high amounts of [14C]-labeled mitochondrial oxidation products were formed from oxidation of 24:5n-3, 18- and 20-carbon PUFAs. With 18:1n-9, high amounts of mitochondrial oxidation products were formed in the absence of TDGA, and TDGA strongly suppressed the oxidation of this fatty acid. Data of this study indicated that a shift in the partitioning from mitochondrial to peroxisomal oxidation differed for each individual fatty acid and is a specific property of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs.[14C]22:6n-3 was detected with [3-14C]24:5n-3, but not with [1-14C]24:5n-3 as the substrate, while [14C]16:0 was detected with [1-14C]24:5n-3, but not with [3-14C]24:5n-3 as the substrate. Furthermore, the amounts of 14CO(2) were similar when cells were incubated with [3-14C]24:5n-3 versus [1-14C]24:5n-3. These findings indicated that the proportion of 24:5n-3 oxidized in mitochondria was high, and that 24:5n-3 and 24:6n-3 were mostly beta-oxidized only one cycle in peroxisomes.  相似文献   

18.
There is a growing number of animal models and clinical trials of n-3 polyunsaturated fatty acid (PUFAs) supplementation in disease. Epidemiologic and biochemical studies have suggested beneficial effects of n-3 PUFAs. But also, the use of n-3 PUFAs has some potential toxicological risks that can be circumvented by careless processing, storing, and preserving the PUFAs. The use of n-3 PUFAs is safe if appropriate preparations and dosages are selected. Much research is needed to clarify their use under different disease conditions. The newly established clinical and nutritional facts on n-3 PUFAs will induce industry to develop food products based on this knowledge.  相似文献   

19.
The opposing effects of n-3 and n-6 fatty acids   总被引:5,自引:0,他引:5  
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.  相似文献   

20.
In this study the n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid appear to be effective inducers of electrophile-responsive element (EpRE) regulated genes, whereas the n-6 PUFA arachidonic acid is not. These n-3 PUFAs need to be oxidized to induce EpRE-regulated gene expression, as the antioxidant vitamin E can partially inhibit the PUFA induced dose-dependent effect. Results were obtained using a reporter gene assay, real-time RT-PCR and enzyme activity assays. The induction of EpRE-regulated phase II genes by n-3 PUFAs may be a major pathway by which n-3 PUFAs, in contrast to n-6 PUFAs, are chemopreventive and anticarcinogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号