首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We analyzed Japanese bunching onion (Allium fistulosum L.) - shallot (Allium cepa L. Aggregatum group) alien chromosome addition lines in order to assign the genes involved in the flavonoid biosynthesis pathway to chromosomes of the shallot. Two complete sets of alien monosomic additions (2n = 2x + 1 = 17) were used for determining the chromosomal locations of several partial sequences of candidate genes, CHS, CHI, F3H, DFR, and ANS via analyses of PCR-based markers. The results of DNA marker analyses showed that the CHS-A, CHS-B, CHI, F3H, DFR, and ANS genes should be assigned to chromosomes 2A, 4A, 3A, 3A, 7A, and 4A, respectively. HPLC analyses of 14 A. fistulosum - shallot multiple alien additions (2n = 2x + 2 - 2x + 7 = 18 - 23) were conducted to identify the anthocyanin compounds produced in the scaly leaves. A direct comparison between the genomic constitution and the anthocyanin compositions of the multiple additions revealed that a 3GT gene for glucosylation of anthocyanidin was located on 4A. Thus, we were able to assign all structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of A. cepa.  相似文献   

3.
4.
To elucidate gene regulation of flower colour formation, the gene expressions of the enzymes involved in flavonoid biosynthesis were investigated in correlation with their product during floral development in lisianthus. Full-length cDNA clones of major responsible genes in the central flavonoid biosynthetic pathway, including chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and flavonol synthase (FLS), were isolated and characterized. In lisianthus, the stage of the accumulation of flavonols and anthocyanins was shown to be divided clearly. The flavonol content increased prior to anthocyanin accumulation during floral development and declined when anthocyanin began to accumulate. CHS, CHI, and F3H were necessary for both flavonol and anthocyanin biosynthesis and were coordinately expressed throughout all stages of floral development; their expressions were activated independently at the stages corresponding to flavonol accumulation and anthocyanin accumulation, respectively. Consistent with flavonol and anthocyanin accumulation patterns, FLS, a key enzyme in flavonol biosynthesis, was expressed prior to the expression of the genes involved in anthocyanin biosynthesis. The genes encoding F3'5'H, DFR, and ANS were expressed at later stages, just before pigmentation. The genes responsible for the flavonoid pathways branching to anthocyanins and flavonols were strictly regulated and were coordinated temporally to correspond to the biosynthetic order of their respective enzymes in the pathways, as well as in specific organs. In lisianthus, FLS and DFR, at the position of branching to flavonols and anthocyanins, were supposed to play a critical role in regulation of each biosynthesis.  相似文献   

5.
The level of grain dormancy and sensitivity to ABA of the embryo, a key factor in grain dormancy, were examined in developing grains of a white-grained wheat line, Novosibirskaya 67 (NS-67), and its red-grained near-isogenic lines (ANK-1A to -1D); a red-grained line, AUS 1490, and its white-grained mutant line (EMS-AUS). ANK lines showed higher levels of grain dormancy than NS-67 at harvest maturity. AUS 1490 grain also showed higher dormancy than EMS-AUS grain. These results suggest that the R gene for grain colour can enhance grain dormancy. However, the dormancy effect conferred by the R gene was not large, suggesting that it plays a minor role in the development of grain dormancy. Water extracts of AUS 1490 and EMS-AUS bran contained germination inhibitors equivalent to 1-10 microM ABA, although there was no difference in the amount of inhibitors between AUS 1490 and EMS-AUS. Thus, the grain colour gene of AUS 1490 did not appear to enhance the level of grain dormancy by accumulating germination inhibitors in its bran. Sensitivity to ABA of embryos was higher in grains collected around harvest-maturity for ANK lines and AUS 1490, compared with NS-67 and EMS-AUS. The R gene might enhance grain dormancy by increasing the sensitivity of embryos to ABA.  相似文献   

6.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   

7.
8.
蓝色色素在蓝粒小麦种子糊粉层中的生物合成途径的分子生物学机制至今仍不清楚.应用RT-PCR和RACE方法从蓝粒小麦正在发育的种子中克隆到一个编码二氢黄酮醇4-还原酶的基因(DFR).推测其为花青素生物合成途径中的一个关键基因,且与蓝粒小麦中蓝色色素形成密切相关;其开放阅读框编码一个包含354个氨基酸残基的多肽,与一些从其他植物中已克隆到的DFR有很高的同源性:大麦(94%)、水稻(83%)、玉米(84%).从长穗偃麦草(2n=70)、蓝粒小麦、浅蓝粒小麦自交产生的白粒后代小麦以及中国春的基因组中分别分离到一个全长DFR序列.经聚类分析表明DFR cDNA核甘酸序列与从中国春基因组中克隆的DFR具有100%的同源性,且与长穗偃麦草、蓝粒小麦、白粒小麦基因组中分离的DFR均有很高的同源性.4个DFR基因组DNA均含有3个内含子,且它们之间的差异主要在内含子区,表明该基因在进化上很保守.经Southern杂交分析,DFR在小麦中至少有3~5个拷贝,不同小麦材料间未见明显差异,但与长穗偃麦草有明显差异,属于一个DFR超基因家族.Northern分析表明该DFR在蓝粒和白粒种子的不同发育时期的表达存在明显差异,都在开花后大约18 d表达最强,在同一时期的蓝白种子中,DFR在蓝粒种子中的表达量高于白粒.DFR转录本在小麦和长穗偃麦草的幼叶中积累多,但在芽鞘中的表达显著低于幼叶中;在小麦的根和长穗偃麦草的发育种子中均未检测到DFR的表达.推测蓝粒小麦中可能存在调控DFR在蓝粒小麦中表达的调控基因,类似于玉米花青素合成途径中的调节基因.  相似文献   

9.
Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor.  相似文献   

10.
Improved resistance to preharvest sprouting in modern bread wheat (Triticum aestivum. L.) can be achieved via the introgression of grain dormancy and would reduce both the incidence and severity of damage due to unfavourable weather at harvest. The dormancy phenotype is strongly influenced by environmental factors making selection difficult and time consuming and this trait an obvious candidate for marker assisted selection. A highly significant Quantitative Trait Locus (QTL) associated with grain dormancy and located on chromosome 4A was identified in three bread wheat genotypes, two white- and one red-grained, of diverse origin. Flanking SSR markers on either side of the putative dormancy gene were identified and validated in an additional population involving one of the dormant genotypes. Genotypes containing the 4A QTL varied in dormancy phenotype from dormant to intermediate dormant. Based on a comparison between dormant red- and white-grained genotypes, together with a white-grained mutant derived from the red-grained genotype, it is concluded that the 4A QTL is a critical component of dormancy; associated with at least an intermediate dormancy on its own and a dormant phenotype when combined with the R gene in the red-grained genotype and as yet unidentified gene(s) in the white-grained genotypes. These additional genes appeared to be different in AUS1408 and SW95-50213.  相似文献   

11.
蓝色色素在蓝粒小麦种子糊粉层中的生物合成途径的分子生物学机制至今仍不清楚。应用RT—PCR和RACE方法从蓝粒小麦正在发育的种子中克隆到一个编码二氢黄酮醇4-还原酶的基因(DFR)。推测其为花青素生物合成途径中的一个关键基因,且与蓝粒小麦中蓝色色素形成密切相关;其开放阅读框编码一个包含354个氨基酸残基的多肽,与一些从其他植物中已克隆到的DFR有很高的同源性:大麦(94%)、水稻(83%)、玉米(84%)。从长穗偃麦草(2n=70)、蓝粒小麦、浅蓝粒小麦自交产生的白粒后代小麦以及中国春的基因组中分别分离到一个全长DFR序列。经聚类分析表明DFR cDNA核甘酸序列与从中国春基因组中克隆的DFR具有100%的同源性,且与长穗偃麦草、蓝粒小麦、白粒小麦基因组中分离的DFR均有很高的同源性。4个DFR基因组DNA均含有3个内含子,且它们之间的差异主要在内含子区,表明该基因在进化上很保守。经Southern杂交分析,DFR小麦中至少有3-5个拷贝,不同小麦材料间未见明显差异,但与长穗偃麦草有明显差异,属于一个DFR超基因家族。Northern分析表明该DFR在蓝粒和白粒种子的不同发育时期的表达存在明显差异,都在开花后大约18d表达最强,在同一时期的蓝白种子中,DFR蓝粒种子中的表达量高于白粒。DFR转录本在小麦和长穗偃麦草的幼叶中积累多,但在芽鞘中的表达显著低于幼叶中;在小麦的根和长穗偃麦草的发育种子中均未检测到DFR的表达。推测蓝粒小麦中可能存在调控DFR在蓝粒小麦中表达的调控基因,类似于玉米花青素合成途径中的调节基因。  相似文献   

12.
13.
对红色、黄色、粉紫色和白色菊花品种不同开放度的花序舌状花中CHS、CHI、DFR、F3H、F3′H和3GT基因的表达量进行了相对定量分析。结果表显示:6个基因的表达因不同花色、不同发育阶段而异。‘钟山红鹰’(红色)中各基因的表达量均较高,且均在Ⅱ(松蕾期)或Ⅲ(半开期)期达到峰值,其中DFR、3GT基因的表达量远高于其他花色品种。‘金陵娇黄’(黄色)中CHS、CHI基因表达量较高,且Ⅰ(紧蕾期)、Ⅱ期表达量高于Ⅲ、Ⅳ(盛开期)期;3GT、DFR基因表达量分别高或低于‘金陵笑靥’(粉紫色)品种中相应基因的表达量,但均比红色品种低;F3H在4个品种中表达量最低,F3′H表达量接近或略低于红色或粉紫色品种,且各阶段表达水平较稳定。‘金陵笑靥’中DFR表达量仅次于‘钟山红鹰’,3GT和CHS表达量低于红色与黄色品种。‘钟山雪桂’(白色)中各基因仅有微量表达,除F3H外各基因的表达量明显低于其他花色品种。研究表明,花色素结构基因DFR、3GT是菊花花色素合成的关键基因,DFR很可能是限速关键基因,一定表达水平的CHS、CHI也是菊花花色素合成所必须的,F3H基因与花色素合成不存在直接相关。  相似文献   

14.
植物色素主要有花青素、类胡萝卜素和生物碱类色素三大类,其中花青素是决定大部分被子植物组织或器官颜色的重要色素。花青素通过类黄酮途径合成,该途径是生物学上研究较多且较为清楚的代谢途径之一。近年来的研究表明,在该途径中除了查尔酮合成酶(chalcone synthase,CHS)、查尔酮异构酶(chalcone isomerase,CHI)和黄烷酮-3-羟化酶(flavanone-3-hydrolase,F3H)起着关键作用外,二氢黄酮醇-4-还原酶(dihydroflavonol 4-reductase,DFR)对花青素的合成也至关重要。DFR可催化3种二氢黄酮醇和2种黄烷酮生成5种不同的花青素前体,且DFR基因家族不同成员对各个底物的催化效率不同,因此它在一定程度上决定着植物中花青素的种类和含量,从而影响植物组织或器官的颜色。该文对近年来国内外有关DFR在花青素合成过程中的生物学功能与调控,包括DFR的特征、作用机制和系统进化以及环境、转录因子和一些结构基因与DFR的关系等方面的研究进展进行了综述,以期为DFR今后的研究和利用基因工程改变植物组织或器官的颜色提供理论依据。  相似文献   

15.
Shih CH  Chu H  Tang LK  Sakamoto W  Maekawa M  Chu IK  Wang M  Lo C 《Planta》2008,228(6):1043-1054
Rice is a model system for monocot but the molecular features of rice flavonoid biosynthesis have not been extensively characterized. Rice structural gene homologs encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) were identified by homology searches. Unique differential expression of OsF3H, OsDFR, and OsANS1 controlled by the Pl w locus, which contains the R/B-type regulatory genes OSB1 and OSB2, was demonstrated during light-induced anthocyanin accumulation in T65-Plw seedlings. Previously, F3H genes were often considered as early genes co-regulated with CHS and CHI genes in other plants. In selected non-pigmented rice lines, OSB2 is not expressed following illumination while their expressed OSB1sequences all contain the same nucleotide change leading to the T64 M substitution within the conserved N-terminal interacting domain. Furthermore, the biochemical roles of the expressed rice structural genes (OsCHS1, OsCHI, OsF3H, and OsF3′H) were established in planta for the first time by complementation in the appropriate Arabidopsis transparent testa mutants. Using yeast two-hybrid analysis, OsCHS1 was demonstrated to interact physically with OsF3H, OsF3′H, OsDFR, and OsANS1, suggesting the existence of a macromolecular complex for anthocyanin biosynthesis in rice. Finally, flavones were identified as the major flavonoid class in the non-pigmented T65 seedlings in which the single-copy OsF3H gene was not expressed. Competition between flavone and anthocyanin pathways was evidenced by the significant reduction of tricin accumulation in the T65-Plw seedlings. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Throughout the plant kingdom expression of the flavonoid biosynthetic pathway is precisely regulated in response to developmental signals, nutrient status, and environmental stimuli such as light, heat and pathogen attack. Previously we showed that, in developing Arabidopsis seedlings, flavonoid genes are transiently expressed during germination in a light-dependent manner, with maximal mRNA levels occurring in 3-day-old seedlings. Here we describe the relationship between developmental and environmental regulation of flavonoid biosynthesis by examining phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) mRNA levels in germinating Arabidopsis seedlings as a function of light, developmental stage and temperature. We show that seedlings exhibit a transient potential for induction of these four genes, which is distinct from that observed for chlorophyll a/b-binding protein (CAB). The potential for flavonoid gene induction was similar in seedlings grown in darkness and red light, indicating that induction potential is not linked to cotyledon expansion or the development of photosynthetic capacity. The evidence for metabolic regulation of flavonoid genes during seedling development is discussed.  相似文献   

18.
Genes involved in flavonoid and stilbene biosynthesis were isolated from grape (Vitis vinifera L.). Clones coding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydoxylase (F3H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX) and UDP glucose:flavonoid 3-O-glucosyl transferase (UFGT), were isolated by screening a cDNA library, obtained from mRNA from seedlings grown in light for 48 h using snapdragon (Antirrhinum majus) and maize heterologous probes. A cDNA clone coding for stilbene synthase (StSy) was isolated by probing the library with a specific oligonucleotide. These clones were sequenced and when the putative products were compared to the published amino acid sequence for corresponding enzymes, the percentages of similarity ranged from 65% (UFGT) to 90% (CHS and PAL). The analysis of the genomic organization and expression of these genes in response to light shows that PAL and StSy genes belong to large multigene families, while the others are present in one to four copies per haploid genome. The steady-state level of mRNAs encoded by the flavonoid biosynthetic genes as determined in young seedlings is coordinately induced by light, except for PAL and StSy, which appear to be constitutively expressed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号