首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Throughout the plant kingdom expression of the flavonoid biosynthetic pathway is precisely regulated in response to developmental signals, nutrient status, and environmental stimuli such as light, heat and pathogen attack. Previously we showed that, in developing Arabidopsis seedlings, flavonoid genes are transiently expressed during germination in a light-dependent manner, with maximal mRNA levels occurring in 3-day-old seedlings. Here we describe the relationship between developmental and environmental regulation of flavonoid biosynthesis by examining phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) mRNA levels in germinating Arabidopsis seedlings as a function of light, developmental stage and temperature. We show that seedlings exhibit a transient potential for induction of these four genes, which is distinct from that observed for chlorophyll a/b-binding protein (CAB). The potential for flavonoid gene induction was similar in seedlings grown in darkness and red light, indicating that induction potential is not linked to cotyledon expansion or the development of photosynthetic capacity. The evidence for metabolic regulation of flavonoid genes during seedling development is discussed.  相似文献   

2.
Genes involved in flavonoid and stilbene biosynthesis were isolated from grape (Vitis vinifera L.). Clones coding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydoxylase (F3H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX) and UDP glucose:flavonoid 3-O-glucosyl transferase (UFGT), were isolated by screening a cDNA library, obtained from mRNA from seedlings grown in light for 48 h using snapdragon (Antirrhinum majus) and maize heterologous probes. A cDNA clone coding for stilbene synthase (StSy) was isolated by probing the library with a specific oligonucleotide. These clones were sequenced and when the putative products were compared to the published amino acid sequence for corresponding enzymes, the percentages of similarity ranged from 65% (UFGT) to 90% (CHS and PAL). The analysis of the genomic organization and expression of these genes in response to light shows that PAL and StSy genes belong to large multigene families, while the others are present in one to four copies per haploid genome. The steady-state level of mRNAs encoded by the flavonoid biosynthetic genes as determined in young seedlings is coordinately induced by light, except for PAL and StSy, which appear to be constitutively expressed.  相似文献   

3.
4.
To elucidate gene regulation of flower colour formation, the gene expressions of the enzymes involved in flavonoid biosynthesis were investigated in correlation with their product during floral development in lisianthus. Full-length cDNA clones of major responsible genes in the central flavonoid biosynthetic pathway, including chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and flavonol synthase (FLS), were isolated and characterized. In lisianthus, the stage of the accumulation of flavonols and anthocyanins was shown to be divided clearly. The flavonol content increased prior to anthocyanin accumulation during floral development and declined when anthocyanin began to accumulate. CHS, CHI, and F3H were necessary for both flavonol and anthocyanin biosynthesis and were coordinately expressed throughout all stages of floral development; their expressions were activated independently at the stages corresponding to flavonol accumulation and anthocyanin accumulation, respectively. Consistent with flavonol and anthocyanin accumulation patterns, FLS, a key enzyme in flavonol biosynthesis, was expressed prior to the expression of the genes involved in anthocyanin biosynthesis. The genes encoding F3'5'H, DFR, and ANS were expressed at later stages, just before pigmentation. The genes responsible for the flavonoid pathways branching to anthocyanins and flavonols were strictly regulated and were coordinated temporally to correspond to the biosynthetic order of their respective enzymes in the pathways, as well as in specific organs. In lisianthus, FLS and DFR, at the position of branching to flavonols and anthocyanins, were supposed to play a critical role in regulation of each biosynthesis.  相似文献   

5.
Boss PK  Davies C  Robinson SP 《Plant physiology》1996,111(4):1059-1066
Anthocyanin synthesis in Vitis vinifera L. cv Shiraz grape berries began 10 weeks postflowering and continued throughout berry ripening. Expression of seven genes of the anthocyanin biosynthetic pathway (phenylalanine ammonia lyase [PAL], chalcone synthase [CHS], chalcone isomerase [CHI], flavanone-3-hydroxylase [F3H], dihydroflavonol 4-reductase [DFR], leucoanthocyanidin dioxygen-ase [LDOX], and UDP glucose-flavonoid 3-o-glucosyl transferase [UFGT]) was determined. In flowers and grape berry skins, expression of all of the genes, except UFGT, was detected up to 4 weeks postflowering, followed by a reduction in this expression 6 to 8 weeks postflowering. Expression of CHS, CHI, F3H, DFR, LDOX, and UFGT then increased 10 weeks postflowering, coinciding with the onset of anthocyanin synthesis. In grape berry flesh, no PAL or UFGT expression was detected at any stage of development, but CHS, CHI, F3H, DFR, and LDOX were expressed up to 4 weeks postflowering. These results indicate that the onset of anthocyanin synthesis in ripening grape berry skins coincides with a coordinated increase in expression of a number of genes in the anthocyanin biosynthetic pathway, suggesting the involvement of regulatory genes. UFGT is regulated independently of the other genes, suggesting that in grapes the major control point in this pathway is later than that observed in maize, petunia, and snapdragon.  相似文献   

6.
7.
Enhanced shoot growth and a decrease in flavonoid concentration in apple trees grown under high nitrogen (N) supply was observed in previous studies, along with increasing scab susceptibility of cultivar "Golden Delicious" after high N nutrition. Several hypotheses have suggested that there is a trade-off between primary and secondary metabolism because of competition for common substrates, but nothing is known about regulation at the enzyme level. In this study, a set of experiments was performed to elucidate the effect of N nutrition on the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase [PAL], chalcone synthase/chalcone isomerase [CHS/CHI}, flavanone 3-hydroxylase [FHT], flavonol synthase [FLS], dihydroflavonol 4-reductase [DFR]) and the accumulation of different groups of phenylpropanoids. The inhibition of flavonoid accumulation by high N nutrition could be confirmed, but the influence of N supply on the flavonoid enzymes CHS/CHI, FHT, DFR, and FLS was not evident. However, PAL activity seems to be downregulated, thus forming a bottleneck resulting in a generally decreased flavonoid accumulation. Furthermore, the response of the scab-resistant cultivar "Rewena" to high N nutrition was not as strong as that of the susceptible cultivar "Golden Delicious".  相似文献   

8.
9.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   

10.
11.
12.
植物色素主要有花青素、类胡萝卜素和生物碱类色素三大类,其中花青素是决定大部分被子植物组织或器官颜色的重要色素。花青素通过类黄酮途径合成,该途径是生物学上研究较多且较为清楚的代谢途径之一。近年来的研究表明,在该途径中除了查尔酮合成酶(chalcone synthase,CHS)、查尔酮异构酶(chalcone isomerase,CHI)和黄烷酮-3-羟化酶(flavanone-3-hydrolase,F3H)起着关键作用外,二氢黄酮醇-4-还原酶(dihydroflavonol 4-reductase,DFR)对花青素的合成也至关重要。DFR可催化3种二氢黄酮醇和2种黄烷酮生成5种不同的花青素前体,且DFR基因家族不同成员对各个底物的催化效率不同,因此它在一定程度上决定着植物中花青素的种类和含量,从而影响植物组织或器官的颜色。该文对近年来国内外有关DFR在花青素合成过程中的生物学功能与调控,包括DFR的特征、作用机制和系统进化以及环境、转录因子和一些结构基因与DFR的关系等方面的研究进展进行了综述,以期为DFR今后的研究和利用基因工程改变植物组织或器官的颜色提供理论依据。  相似文献   

13.
14.
Antibodies have been developed against the first two enzymes of flavonoid biosynthesis in Arabidopsis thaliana. Chalcone synthase (CHS) and chalcone isomerase (CHI) were overexpressed and purified from Escherichia coli as fusion proteins with glutathione S-transferase from Schistosoma japonicum. The recombinant proteins were then used to immunize chickens and the resulting IgY fraction was purified from egg yolks. Immunoblots of crude protein extracts from Arabidopsis seedlings carrying wild-type and null alleles for CHS and CHI showed that the resulting antibody preparations provide useful tools for characterizing expression of the flavonoid pathway at the protein level. An initial analysis of expression patterns in seedlings shows that CHS and CHI proteins are present at high levels during a brief period of early seedling germination that just precedes the transient accumulation of flavonoid end-products.  相似文献   

15.
16.
17.
This study investigated the effects of cross-talk interactions of sucrose and infection caused by a pathogenic fungus Fusarium oxysporum f.sp. lupini on the regulation of the phenylpropanoid pathway, i.e. the level of expression of genes encoding enzymes participating in flavonoid biosynthesis, as well as cell location and accumulation of these compounds in embryo axes of Lupinus luteus L. cv. Polo. Embryo axes, both non-inoculated and inoculated, were cultured for 96 h on Heller medium with 60 mM sucrose (+Sn and +Si) or without it (−Sn and −Si). Real-time RT-PCR to assess expression levels of the flavonoid biosynthetic genes, phenylalanine ammonialyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI) and isoflavone synthase (IFS) were used. Sucrose alone strongly stimulated the expression of these genes. There was a very high expression level of these genes in +Si embryo axes in the early phase of infection. Signal amplification by sucrose and the infection was most intense in the 48-h +Si axes, resulting in the highest level of expression of flavonoid biosynthetic genes. In −Si tissues, the expression level of these genes increased at 48 and 72 h after inoculation relative to 24 h; however, the relative level of expression was much lower than in +Si axes, except at 72 h for PAL and CHS.Moreover, at 48 h of culture, considerably higher activity of CHI (EC 5.5.1.6) was observed in axes with a high level of sucrose than in those with a sucrose deficit. CHI activity in +Si axes at 48 and 96 h post-inoculation was over 1.5 and 2 times higher than that in +Sn axes, as well as higher than in −Si axes.Observations of yellow lupine embryo axes under a confocal microscope showed an increased post-infection accumulation of flavonoids, particularly in cells of embryo axes infected with F. oxysporum and cultured on a medium containing sucrose (+Si). Up to 48 h post-infection in +Si axes, a very intensive emission of green fluorescence was observed, indicating high accumulation of these compounds in whole cells. Moreover, a nuclear location of flavonoids was recorded in cells. Strong staining of flavonoid end products in +Si embryo axes was consistent with the expression of PAL, CHS, CHI and IFS.These results indicate that, in the early phase of infection, the flavonoid biosynthesis pathway is considerably enhanced in yellow lupine embryo axes as a strong signal amplification effect of sucrose and the pathogenic fungus F. oxysporum.  相似文献   

18.
Journal of Plant Biochemistry and Biotechnology - The two decisive enzymes in flavonoid biosynthetic pathway are chalcone synthase (CHS) and chalcone isomerase (CHI), wherein the former carries the...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号