首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   63篇
  2018年   1篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   9篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   16篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1974年   1篇
  1964年   1篇
排序方式: 共有156条查询结果,搜索用时 140 毫秒
1.
Decrease or growth of population comes from the interplay of death and birth (and locally, migration). We revive the logistic model, which was tested and found wanting in early-20th-century studies of aggregate human populations, and apply it instead to life expectancy (death) and fertility (birth), the key factors totaling population. For death, once an individual has legally entered society, the logistic portrays the situation crisply. Human life expectancy is reaching the culmination of a two-hundred year-process that forestalls death until about 80 for men and the mid-80's for women. No breakthroughs in longevity are in sight unless genetic engineering comes to help. For birth, the logistic covers quantitatively its actual morphology. However, because we have not been able to model this essential parameter in a predictive way over long periods, we cannot say whether the future of human population is runaway growth or slow implosion. Thus, we revisit the logistic analysis of aggregate human numbers. From a niche point of view, resources are the limits to numbers, and access to resources depends on technologies. The logistic makes clear that for homo faber, the limits to numbers keep shifting. These moving edges may most confound forecasting the long-run size of humanity.  相似文献   
2.
Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.  相似文献   
3.
We cloned the rpoN (ntrA, glnF) gene encoding the alternate sigma factor sigma(54) from the opportunistic multihost pathogen Pseudomonas aeruginosa strain PA14. A marker exchange protocol was used to construct the PA14 rpoN insertional mutation rpoN::Gen(r). PA14 rpoN::Gen(r) synthesized reduced levels of pyocyanin and displayed a variety of phenotypes typical of rpoN mutants, including a lack of motility and the failure to grow on nitrate, glutamate, or histidine as the sole nitrogen source. Compared to wild-type PA14, rpoN::Gen(r) was ca. 100-fold less virulent in a mouse thermal injury model and was significantly impaired in its ability to kill the nematode Caenorhabditis elegans. In an Arabidopsis thaliana leaf infectivity assay, although rpoN::Gen(r) exhibited significantly reduced attachment to trichomes, stomata, and the epidermal cell surface, did not attach perpendicularly to or perforate mesophyll cell walls, and proliferated less rapidly in Arabidopsis leaves, it nevertheless elicited similar disease symptoms to wild-type P. aeruginosa PA14 at later stages of infection. rpoN::Gen(r) was not impaired in virulence in a Galleria mellonella (greater wax moth) pathogenicity model. These data indicate that rpoN does not regulate the expression of any genes that encode virulence factors universally required for P. aeruginosa pathogenicity in diverse hosts.  相似文献   
4.
5.
Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated the dissection of canonical eukaryotic defence pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defence and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here, we describe the life cycle of S.?flava on Arabidopsis and use multiple approaches to characterize the response of Arabidopsis to S.?flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defence-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S.?flava, and priming with jasmonate or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S.?flava larvae reared on Arabidopsis jasmonate signalling mutants and increased in plants pretreated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyse insect-plant interactions.  相似文献   
6.
We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available through the open-source CellProfiler project and enables objective scoring of whole-worm high-throughput image-based assays of C. elegans for the study of diverse biological pathways that are relevant to human disease.  相似文献   
7.
Polygalacturonase-inhibiting proteins (PGIPs) are plant proteins that counteract fungal polygalacturonases, which are important virulence factors. Like many other plant defense proteins, PGIPs are encoded by gene families, but the roles of individual genes in these families are poorly understood. Here, we show that in Arabidopsis, two tandemly duplicated PGIP genes are upregulated coordinately in response to Botrytis cinerea infection, but through separate signal transduction pathways. AtPGIP2 expression is mediated by jasmonate and requires COI1 and JAR1, whereas AtPGIP1 expression is upregulated strongly by oligogalacturonides but is unaffected by salicylic acid, jasmonate, or ethylene. Both AtPGIP1 and AtPGIP2 encode functional inhibitors of polygalacturonase from Botrytis, and their overexpression in Arabidopsis significantly reduces Botrytis disease symptoms. Therefore, gene duplication followed by the divergence of promoter regions may result in different modes of regulation of similar defensive proteins, thereby enhancing the likelihood of defense gene activation during pathogen infection.  相似文献   
8.
Escherichia coli O157:H7 (O157) strains demonstrate varied pulsed-field gel electrophoresis patterns following XbaI digestion, which enable epidemiological surveillance of this important human pathogen. The genetic events underlying PFGE differences between strains, however, are not defined. We investigated the mechanisms for strain variation in O157 by recovering and examining nucleotide sequences flanking each of the XbaI restriction enzyme sites in the genome. Our analysis demonstrated that differences between O157 strains were due to discrete insertions or deletions that contained the XbaI sites polymorphic between strains rather than single-nucleotide polymorphisms in the XbaI sites themselves. These insertions and deletions were found to be uniquely localized within the regions of the genome that are specific to O157 compared to E. coli K-12 (O islands), suggesting that strain-to-strain variation occurs in these O islands. These results may be utilized to devise novel strain-typing tools for this pathogen.  相似文献   
9.
The generalist insect herbivore Trichoplusia ni (cabbage looper) readily consumes Arabidopsis and can complete its entire life cycle on this plant. Natural isolates (ecotypes) of Arabidopsis are not equally susceptible to T. ni feeding. While some are hardly touched by T. ni, others are eaten completely to the ground. Comparison of two commonly studied Arabidopsis ecotypes in choice experiments showed that Columbia is considerably more resistant than Landsberg erecta. In no-choice experiments, where larvae were confined on one or the other ecotype, weight gain was more rapid on Landsberg erecta than on Columbia. Genetic mapping of this difference in insect susceptibility using recombinant inbred lines resulted in the discovery of the TASTY locus near 85 cM on chromosome 1 of Arabidopsis. The resistant allele of this locus is in the Columbia ecotype, and an F(1) hybrid has a sensitive phenotype that is similar to that of Landsberg erecta. The TASTY locus is distinct from known genetic differences between Columbia and Landsberg erecta that affect glucosinolate content, trichome density, disease resistance, and flowering time.  相似文献   
10.
Summary To establish a genetic system for dissection of light-mediated signal transduction in plants, we analyzed the light wavelengths and promoter sequences responsible for the light-induced expression of the Arabidopsis thaliana chalcone synthase (CHS) promoter fused to the -glucuronidase (GUS) marker gene. Transgenic A. thaliana lines carrying 1975, 523, 186, and 17 by of the CHS promoter fused to the GUS gene were generated, and the expression of these chimeric genes was monitored in response to high intensity light in mature plants and to different wavelengths of light in seedlings. Fusion constructs containing 1975 and 523 by of CHS promoter sequence behaved identically to the endogenous CHS gene under all conditions. Expression of these constructs was induced specifically in response to high intensity white light and blue light. The response to blue light was seen in the presence of the Pfr form of phytochrome. Fusion constructs containing 186 by of promoter sequence showed reduced basal levels of expression and only weak stimulation by blue light but were induced significantly by high intensity white light. These analyses showed that the expression of the A. thaliana CHS gene is responsive to a specific blue light receptor and that sequences between — 523 and — 186 by are required for optimal basal and blue light-induced expression of this gene. The experiments lay the foundation for a simple genetic screen for light response mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号