首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
<正> 胱氨酸在工业、农业、医药、特别在食品和化妆品方面用途较广。它属于精细化工高档产品。胱氨酸在我国主要用于出口换取外汇,因此,引起外贸部门的重视。氯离子含量对胱氨酸的纯度有着一定的影响,所以氯成为恒量胱氨酸成品质量的重要指标之一。有关国家胱氨酸产品中氯含量控制指标如下  相似文献   

2.
用氧化亚铜从人发水解液中沉淀胱氨酸的研究   总被引:1,自引:0,他引:1  
用氧化亚铜沉淀毛发水解液中的胱氨酸 ,其沉淀率最高可达 90 %左右。沉淀剂的用量 ,溶液的pH值及沉淀时水用量对沉淀效率有影响。通过实验确定了氧化亚铜沉淀毛发水解液中胱氨酸的最佳操作条件。  相似文献   

3.
以重组人tPA蛋白为材料研究了精氨酸、精氨酸盐酸盐、半胱氨酸、胱氨酸对蛋白质复性效果的影响,重组tPA蛋白包涵体经尿素变性溶解后,在精氨酸、精氨酸盐酸盐、半胱氨酸、胱氨酸存在的条件下进行复性,结果表明,碱性的精氨酸在质量分数0.2%时可减少蛋白质凝聚,显著提高复性效果,tPA复性后的活性可提高50%以上,半胱氨酸单独使用具有类似β-巯基乙醇的作用,精氨酸盐酸盐和胱氨酸单独使用对复性无影响,而半胱氨酸和胱氨酸联合使用,有类似氧化-还原系统作用。可提高活性20%。  相似文献   

4.
山羊毛提取L-胱氨酸杂质源及其除杂工艺   总被引:1,自引:1,他引:0  
山羊毛提取L 胱氨酸过程中伴有上百种有机类、无机类杂质的形成 ,分析杂质的形成过程及其对胱氨酸收率和产品质量的影响 ,采用料毛物理化学法除杂、活性炭两次脱色、三次中和重结晶除杂工艺 ,杂质除净率高 ,L 胱氨酸产品质量达HG 2 0 30 - 91优质品标准。  相似文献   

5.
《生物资源》1975,(2):12-16
<正> 我们是以酸水解法从猪毛中提取胱氨酸的。因此猪毛角蛋白质被水解成氨基酸的过程,受酸的浓度,水解的温度和时间这三个因素的影响。关于如何应用酸的浓度,控制水解的温度和时间,有各种各样的说法。为了取得第一手材料,摸清在常压下水解猪毛,酸的浓度、温度、时间三因素对胱氨酸得率的影响,我们在数学系同学的大力支援下,应用了\"正交设计法\"——这个能从多因素中找出最适条件的试验方法,进行了提高胱氨酸水解得率的试  相似文献   

6.
<正> 利用毛发水解提取胱氨酸的生产过程中,要经过三次胱氨酸的结晶。设法降低结晶过程中胱氨酸的损失,无疑是提高胱氨酸收率的重要途径。胱氨酸结晶良好,颗粒均匀、粗大,不但过滤容易,省时省工,而且穿滤少,胱氨酸损失小,胱氨酸收率可以相应提高。如果胱氨酸结晶不好,微晶过多,过滤时穿滤多,胱氨酸损失大,收率必然  相似文献   

7.
用胱氨酸废液提取的复合氨基酸添加剂为试样 ,以去盲肠和未去盲肠的 2 0周龄罗曼公鸡为试鸡 ,测定了两种鸡对胱氨酸废液中氨基酸的利用率。结果表明 :去盲肠鸡和未去盲肠鸡对胱氨酸废液中氨基酸的真利用率(TAAA)都显著高于其表观利用率 (AAAA) ,(P <0 .0 0 1 ) ;而未去盲肠鸡对胱氨酸废液中氨基酸的TAAA和AAAA都显著高于去盲肠鸡 (P均 <0 .0 0 1 )  相似文献   

8.
酶法转化DL-ATC合成L-半胱氨酸的酶促反应条件研究   总被引:1,自引:0,他引:1  
目的:考察酶源保存方式、酶促反应时间、底物pH值、底物浓度、酶浓度、金属离子等因素对酶活力的影响。方法:以假单胞菌(Pseudomonassp.)TS1138为供试菌株,采用酸式茚三酮法测定L-半胱氨酸含量,研究了酶法转化DL-ATC合成L-半胱氨酸的酶促反应条件。结果:TS1138菌株中L-半胱氨酸脱巯基酶具有较高的活性,而且Mg2 、Mn2 、Fe2 、Zn2 、Cu2 等5种金属离子对DL-ATC水解酶酶系有不同程度的抑制,其中Cu2 对该酶系的抑制作用很大。结论:确定了TS1138菌株酶法转化DL-ATC合成L-半胱氨酸的最适酶促反应条件,为酶促反应动力学的研究奠定了基础。  相似文献   

9.
毛发提取胱氨酸酸解条件的研究   总被引:4,自引:0,他引:4  
该文对毛发提取胱氨酸生产过种中酸解条件对产率的影响进行了研究,得出了酸解的最佳工艺条件,可使回收率在未回收母液情况下达6.8%。  相似文献   

10.
人发制备胱氨酸水解液中回收HCl的工艺研究   总被引:1,自引:0,他引:1  
根据胱氨酸生产工艺流程 ,在中和工艺前用减压蒸馏法回收HCl,回收的盐酸再用于生产 ,此法不会破坏胱氨酸 ,同时反应前后胱氨酸含量不损失 ,不影响以后的粗制、精制和成品  相似文献   

11.
The characteristics of the uptake of L-cystine by LLC-PK1 cells were examined. The uptake diminished with time in culture after passage of cells while the uptake of sugar increased. In 48-h-cultured cells at a range of cystine concentrations including physiological levels uptake occurred via a saturable process which was independent of medium sodium concentration and pH. No inhibition of cystine uptake occurred in the presence of lysine which is known to share the cystine transport system in uncultured renal proximal tubule cells and brush-border membrane vesicles. Glutamate was a potent inhibitor of cystine uptake and participated in heteroexchange diffusion with cystine. The cystine-glutamate transport process resembles that of cultured human fibroblasts. The inability of these cells to reflect the genetically determined cystine-lysine system which is altered in the kidney in human cystinuria makes them an inappropriate model of the renal tubule cell cystine transport system. On the other hand, they may provide a model system for examining the factors which determine the presence of the various cystine transport process.  相似文献   

12.
Polyamines stimulate lysosomal cystine transport   总被引:1,自引:0,他引:1  
Lysosomal cystine transport is a carrier-dependent process that, in isolated lysosomes, is stimulated by proton gradients, membrane potential, and millimolar concentrations of divalent cations. The importance of these regulatory factors in vivo is not well established. Polyamines were found to stimulate cystine transport in Percoll gradient purified rat liver lysosomes with spermidine greater than putrescine = cadaverine greater than spermine in order of effectiveness. Maximal stimulation was achieved with 500 microM spermidine. The effects of optimal concentrations of polyamines and divalent cations on cystine transport were not additive. Spermidine stimulated cystine efflux from lysosomes of cultured human diploid fibroblasts, but had no effect on lysosomes of cystinotic fibroblasts which have defective cystine transport. Spermidine did not accumulate within lysosomes in exchange for cystine, had no effect on lysosomal pH, had only slight effects on the lysosomal membrane potential, and had little effect on either methionine or tyrosine efflux. Polyamines are cellular cytoplasmic components that, in physiologic concentrations, stimulate lysosomal cystine transport.  相似文献   

13.
本文研究了以猪毛为原料,经过水解、赶酸、中和、结晶、精制提取出胱氨酸纯品;并从分离胱氨酸后的母液中,经过脱色、离子交换、浓缩、结晶、精制,制备出复合氨基酸.在本工艺条件下,胱氨酸产品的收率为4.8%,纯度在99%以上;复合氨基酸产品的收率为41%,纯度在83%以上.本文为扩大试验打下了基础.  相似文献   

14.
Glutathione is involved in the maintenance of the structural and functional integrity of membrane proteins, in protection against free radicals and oxidative stress, and in the detoxification of xenobiotics. The cellular uptake of cystine is the rate limiting step in the biosynthesis of glutathione. The precise mechanism for such uptake is not clear as some reports indicate that the uptake occurs through a glutamate-cystine antiporter (system X(c)(-)), whereas, others suggest that it is taken up by the glutamate transporter (system X(AG)). Our studies in cultured astrocytes derived from neonatal rats showed that glutamate, D- and L-aspartate inhibited cystine uptake; that factors that increased intracellular glutamate levels, which would have enhanced the activity of the antiporter, did not stimulate cystine uptake; that the uptake was sodium dependent and partially chloride dependent; that the b(o,+) and ASC systems, which have been shown to carry cystine in some cells, did not mediate cystine uptake in astrocytes; that glutamate uptake blockers such as L-aspartate-beta-hydroxamate (AbetaH) and L-trans-pyrrolidine-2,4-dicarboxylate (PDC), as well as cystine uptake inhibitor L-alpha-aminoadipate (AAA) potently reduced cystine uptake. Additionally, deferoxamine (100 microM) as well as ammonium chloride (5 mM), both of which inhibit glutamate uptake, also inhibited cystine uptake. Taken together, our findings indicate that astrocytes take up cystine through a similar, if not identical, system used to take up glutamate. Interference of cystine uptake by astrocytes through the glutamate transport system may have profound effects on the redox state and the structural and functional integrity of the CNS.  相似文献   

15.
Transport of cystine in isolated rat hepatocytes in primary culture   总被引:6,自引:0,他引:6  
Uptake of cystine and factors affecting the transport were investigated in adult rat hepatocytes in primary monolayer culture. The cystine uptake was initially mediated by Na+-dependent route(s). However, the activity of Na+-dependent uptake decreased markedly during the culture, and Na+-independent uptake emerged with a lag period of 12 h in response to insulin and dexamethasone in the culture medium. After 48 h in culture, cystine was mainly transported into the cells through this Na+-independent route. The action of insulin and dexamethasone on the enhancement of the Na+-independent uptake was apparently additive, and the enhancement was completely blocked by cycloheximide or actinomycin D. Emergence of the Na+-independent uptake of cystine was also regulated by cell density; at lower density, the uptake tended to be elevated. The transport of cystine through the Na+-independent system was pH sensitive and was inhibited by some anionic amino acids, such as glutamate and homocysteate, but not by aspartate. These results suggest that the emerging system is similar to the ones reported in fibroblasts and in some hepatoma cell lines; the anionic form of cystine is transported through the system.  相似文献   

16.
Exogenous electron transfer mediators employed by Fe(III)-reducing bacteria are believed to govern the kinetics and equilibrium of bioreduction of Fe(III) in solid phase. In contrast to a large number of studies on humic substances and analog anthraquinone-2,6-disulfonate (AQDS), our knowledge of other potential electron shuttles involved in Fe(III) reduction is limited. The purpose of the present study was to understand the role of cystine and cysteine in reduction of iron-rich smectite (nontronite, NAu-2) by Shewanella species. A series of abiotic and biotic experiments were conducted in nongrowth media (bicarbonate buffered, pH = 7.0). Fe(II) and cysteine concentrations were monitored over the course of the bioreduction experiments with wet chemistry, and the unreduced and reduced nontronites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicated that all Shewanella species tested here were capable of reducing cystine to cysteine. Either cystine or cysteine amendments significantly stimulated the Fe(III) bioreduction rate and extent. The initial reduction rate was linearly correlated with cystine or cysteine concentration. The reduction extent (18.7–22.3%) calculated from bioreactor with cystine or cysteine was slightly lower than those with AQDS (26.3%). Mineralogical analysis demonstrated that cystine or cysteine facilitated the reaction of smectite to illite as a result of Fe(III) bioreduction. Thus, we concluded that, in our experiments, cystine and cysteine functioned as electron carrier in the smectite reduction systems, and were favorable factors influencing smectite illitization.  相似文献   

17.
Normal leucocyte lysosome-rich granular fractions exhibited counter-transport of cystine, confirming that cystine transport across the lysosomal membrane is carrier-mediated. The trans-activation of cystine transport was temperature-dependent but relatively independent of the external Na+ or K+ concentration in phosphate buffer. Counter-transport, measured as uptake of exogenous [3H]cystine, increased with increasing intralysosomal cystine content up to approx. 3 nmol of half-cystine/unit of hexosaminidase activity. The amount of [3H]cystine entering lysosomes loaded with unlabelled cystine decreased when unlabelled cystine was added to the extralysosomal medium. Lysosomal cystine counter-transport was stereospecific for the L-isomer. Cystathionine, cystamine and cysteamine-cysteine mixed disulphide gave evidence of sharing the lysosomal cystine-transport system, although at lower activity than cystine. Other tested amino acids, including arginine, glutamate and homocystine, were inactive in this system. Nine leucocyte lysosome-rich preparations from eight different cystinotic patients displayed virtually no counter-transport of cystine, conclusively establishing that a carrier-mediated system for cystine transport is dysfunctional in cystinotic lysosomes.  相似文献   

18.
Abstract— The glutathione level and the factors affecting this level were investigated in fetal rat brain cells in a primary culture. Early in the culture, the glutathione level of the brain cells decreased, but after 5 h it began to increase. This increase was not observed in a cystine-free medium and was prevented by excess glutamate. Cystine was taken up in freshly isolated brain cell suspensions, and its rate increased during the culture. The cystine uptake was mediated by a Na+-independent, glutamate-sensitive route previously found in various types of cells and designated as system xc. The uptake of cystine is a crucial factor in maintaining the glutathione level of the cells under culture, because it provides cysteine for the cells for glutathione synthesis. Cysteine was undetectable in the medium before the culture, but it appeared, though at a very low level, when the brain cells were cultured there. The source of this cysteine was the cystine in the medium. Presumably the decrease in the glutathione level of the cells in the early stage of the culture resulted from the fact that the medium did not contain cysteine. The enhancement of the cystine uptake during culture may constitute a protective mechanism against the oxidative stress to which the cultured cells are exposed. Regulation of the glutathione level in fetal brain cells in vivo by the transport of cystine and cysteine is discussed.  相似文献   

19.
R Steinherz  N Makov  R Narinsky  B Meidan  G Kohn 《Enzyme》1984,32(2):126-130
I-cell fibroblasts can accumulate cystine at levels comparable to those seen in homozygous cystinotic fibroblasts. Cystine accumulation in cystinosis is accounted for cystine clearance defect in situ. To unravel the question whether the same clearance defect or two different mechanisms cause cystine accumulation in I-cell disease, we used the cystine loading technique upon exposure of skin fibroblasts to radioactive cystine dimethyl ester. Normal, cystinotic and I-cell fibroblasts were exposed to radioactive cystine dimethyl ester, and the clearance of the generated radioactive cystine was measured. Cystinotic cells showed a marked defect in cystine clearance in situ, as compared to normal fibroblasts. In I-cell fibroblasts, we observed slow hydrolysis of cystine dimethyl ester to cystine, indicating low esterase activity, but no defect in clearance of the generated cystine. Cysteine production from the exogenous cystine dimethyl ester, presumably by cytoplasmic hydrolysis of the generated cystine, is normal in I-cell fibroblasts. Thus, our results indicate that, unlike cystinosis, there is no cystine clearance defect in situ for cystine in I-cell disease, and probably unrelated mechanisms cause cystine storage in cystinosis and I-cell disease.  相似文献   

20.
The effect of cystine starvation on the transport system of cystine and glutamate was examined in cultures of human diploid fibroblasts. The 2-min uptake of cystine and glutamate increased progressively after a lag of 6 h of cystine starvation. There was approx. 2-3-fold increase, and the increased rate of uptake was accompanied by an increase in the Vmax and unchanged Km. The cystine starvation-induced enhancement appeared specific for the uptake of cystine and glutamate. Actinomycin D or cycloheximide completely blocked the time-related increase in th uptake. Depletion of glutamate did not lead to the enhanced uptake, whereas depletion of glycine and serine caused as much increase in the uptake as depletion of cystine did. The intracellular pool of glutathione was extremely reduced by depletion of cystine, or of glycine and serine, but to a far less extent by depletion of glutamate. The results indicate that te transport system for cystine and glutamate appears to undergo adaptive regulation. It is suggested that glutathione may function as a regulatory signal to this transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号