首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
磷酸乙醇胺甲基转移酶(PEAMT)是催化磷酸乙醇胺(P-EA)甲基化,最终合成磷酸胆碱(P-Cho)的关键酶。文章就近年来植物中PEAMT的结构、性质、功能、表达特性、分子生物学和基因工程的研究进展作了概述。  相似文献   

2.
磷酸胆碱是合成磷脂酰胆碱和甘氨酸甜菜碱的重要前体,磷酸乙醇胺N-甲基转移酶(PEAMT)是磷酸胆碱合成的关键酶。根据已知的SePEAMT cDNA5'端序列设计两个基因特异的反向引物(PP1,PP2),通过锚定PCR获得了PEAMT起始密码子上游1249bp的序列。RLM-RACE反应确定其转录起始位点A位于起始密码子上游301bp处,由此获得了948bp的SePEAMT启动子序列。PlantCARE和PLACE在线启动子预测工具分析表明:该序列除了含有启动子的基本元件TATA-box和CAAT-box外,还含有一些胁迫诱导元件(如ABRE、HSE、LTR)和花粉特异的激活元件AGAAA。构建了SePEAMT启动子与报告基因GUS 融合的表达载体pPro,并通过农杆菌介导的叶盘法转化烟草,染色结果表明SePEAMT启动子可以有效地驱动GUS基因的瞬时表达。  相似文献   

3.
植物甜菜碱合成酶的分子生物学和基因工程   总被引:5,自引:0,他引:5  
甜菜碱是一种非毒性的渗透调节剂,多种高等植物在盐碱或缺水的环境下在细胞中积累甜菜碱,以维持细胞的正常膨压,甜菜碱的积累使得许多代谢中的重要酶类在渗透胁迫下能保持活性,在植物中甜菜碱由胆碱经两步氧化得到,催化第一步反应的酶是胆碱单加氧酶(CMO),催化第二步反应的酶是甜菜碱醛脱氢酶(BADH)。本文综述了这两种酶的分子生物学及基因工程研究的最新进展,讨论了基因工程研究的意义。  相似文献   

4.
甜菜碱是一种非毒性的渗透调节剂。多种高等植物在盐碱或缺水的环境下在细胞中积累甜菜碱 ,以维持细胞的正常膨压。甜菜碱的积累使得许多代谢中的重要酶类在渗透胁迫下能保持活性。在植物中甜菜碱由胆碱经两步氧化得到 ,催化第一步反应的酶是胆碱单加氧酶 (CMO) ,催化第二步反应的酶是甜菜碱醛脱氢酶 (BADH)。本文综述了这两种酶的分子生物学及基因工程研究的最新进展 ,讨论了其基因工程研究的意义。  相似文献   

5.
在嗜盐菌长期的盐适应或短期的盐胁迫过程中,甘氨酸甜菜碱(又名三甲基甘氨酸,N,N,N-trimethylglycine)发挥着极为重要的作用。甘氨酸甜菜碱在嗜盐菌中的生物合成有2种途径:胆碱氧化途径和甘氨酸甲基化途径。前者以胆碱为底物,由胆碱脱氢酶(cholinedehydrogenase,BetA)和甜菜碱乙醛脱氢酶(betaine aldehyde dehydrogenase,BetB)经2次氧化生成甜菜碱;后者以甘氨酸作为底物,由甘氨酸肌醇甲基转移酶(glycine sarcosine N-methyltransferase,GSMT)和肌氨酸二甲基甘氨酸甲基转移酶(sarcosine dimethylglycine N-methyltransferase,SDMT)经3次N-甲基化生成甜菜碱。目前在JGI-IMG和EZBioCloud数据库中公布了134株嗜盐菌标准菌株的全基因组序列。其中,约56.0%的嗜盐细菌和约39.6%的嗜盐古菌拥有胆碱氧化途径所需的2个基因;约9.7%的嗜盐细菌和约0.7%的嗜盐古菌携带甲基化途径所需的2个基因。其中,8株嗜盐细菌同时拥有胆碱氧化途径和甘氨酸甲基化途径所需的全部基因。甘氨酸甜菜碱生物合成基因在典型微生物菌株或经济作物中的表达可以提高其耐盐抗逆能力,这种独特的优势已经引起科学家们强烈的兴趣,相信未来,嗜盐菌中甘氨酸甜菜碱生物合成领域内的科学理论和技术应用会有重大的突破。  相似文献   

6.
木文研究了多种氨基酸、乙醇胺和甲基乙醇胺对细胞摄取胆碱和合成磷脂酰胆碱(PC)的影响,发现多种氨基酸非竞争性地抑制细胞摄取胆碱。含胆碱代谢物的分析显示胆碱转变成CDP-胆碱,随之形成PC均不受氨基酸影响。乙醇胺竞争性地抑制胆碱摄取,且存在剂量依赖关系。乙醇胺能明显抑制胆碱激酶活性,但细胞内胆碱和磷酸胆碱的代谢池并不改变,提示乙醇胺不影响胆碱转变成磷酸胆碱。根据CDP-胆碱和PC的比放射性分布,乙醇胺也不影响PC的生物合成。甲基乙醇胺抑制胆碱摄入的程度强于乙醇胺,并抑制胆碱激酶和CTP:磷酸胆碱胞苷转移酶活性,含胆碱代谢物以CDP-胆碱下降最显著;提示甲基乙醇胺不仅抑制胆碱摄入而且还干扰了CDP-胆碱通路。  相似文献   

7.
甜菜碱(Betaine)是生物体内氨基酸代谢的中间产物[1],可作为甲基供体,参与“一碳单位”的活化的甲基循环[2]。许多生物,特别是依赖环境条件而代谢类型多样化的植物、细菌和水生低等生物,在干旱、盐渍、深冻等低水势的逆境中,为了维持细胞的渗透势,合成和积累有机小分子,如脯氨酸[3]、甜菜碱[4]等氨基酸类,岩藻糖[5]、甘露醇[6]等单糖、双糖、三糖及糖醇类物质。LeRudalier[1]等(1984)法国和美国科学家合作,用150种代谢中间产物作体外渗透胁迫实验,发现只有甘氨酸甜菜碱和脯氨酸甜菜碱能有效地促进细胞生长,…  相似文献   

8.
Halomonas sp.BYS-1是一株能矿化苯乙酸的中度嗜盐细菌,该菌能在0~20%NaCl的条件下生长。甜菜碱是其主要渗透保护剂,通过在培养基中添加甜菜碱合成前体(胆碱、甘氨酸)的方法发现它能以胆碱为前体合成甜菜碱。通过PCR的方法克隆了甜菜碱醛脱氢酶基因(betB),测序后在大肠杆菌中进行了高效表达,表达产物占菌体总蛋白的31.5%,酶活为38.5U/mg,为构建耐盐的转基因植物提供了材料。  相似文献   

9.
甜菜碱提高植物抗寒性的机理及其应用   总被引:4,自引:1,他引:3  
甜菜碱是植物重要的渗透调节物质,在低温等逆境条件下,许多植物细胞中迅速积累甜菜碱以维持细胞的渗透平衡.对近几年来甜菜碱提高植物抗寒性的机理研究及其应用,包括甜菜碱的生物合成途径、低温胁迫下甜菜碱对植物的保护机理、甜菜碱合成酶基因的转化及外源甜菜碱在植物抗寒中的应用进行了综述.  相似文献   

10.
Halomonas sp.BYS1是一株能矿化苯乙酸的中度嗜盐细菌,该菌能在0~20% NaCl 的条件下生长。甜菜碱是其主要渗透保护剂,通过在培养基中添加甜菜碱合成前体(胆碱、甘氨酸)的方法发现它能以胆碱为前体合成甜菜碱。通过PCR的方法克隆了甜菜碱醛脱氢酶基因(betB),测序后在大肠杆菌中进行了高效表达,表达产物占菌体总蛋白的31.5%,酶活为38.5 U/mg,为构建耐盐的转基因植物提供了材料。  相似文献   

11.
The N-methylation of phosphoethanolamine is the committing step in choline biogenesis in plants and is catalyzed by S-adenosyl-L-methionine:phosphoethanolamine N-methyltransferase (PEAMT, EC ). A spinach PEAMT cDNA was isolated by functional complementation of a Schizosaccharomyces pombe cho2(-) mutant and was shown to encode a protein with PEAMT activity and without ethanolamine- or phosphatidylethanolamine N-methyltransferase activity. The PEAMT cDNA specifies a 494-residue polypeptide comprising two similar, tandem methyltransferase domains, implying that PEAMT arose by gene duplication and fusion. Data base searches suggested that PEAMTs with the same tandem structure are widespread among flowering plants. Size exclusion chromatography of the recombinant enzyme indicates that it exists as a monomer. PEAMT catalyzes not only the first N-methylation of phosphoethanolamine but also the two subsequent N-methylations, yielding phosphocholine. Monomethyl- and dimethylphosphoethanolamine are detected as reaction intermediates. A truncated PEAMT lacking the C-terminal methyltransferase domain catalyzes only the first methylation. Phosphocholine inhibits both the wild type and the truncated enzyme, although the latter is less sensitive. Salinization of spinach plants increases PEAMT mRNA abundance and enzyme activity in leaves by about 10-fold, consistent with the high demand in stressed plants for choline to support glycine betaine synthesis.  相似文献   

12.
13.
Mou Z  Wang X  Fu Z  Dai Y  Han C  Ouyang J  Bao F  Hu Y  Li J 《The Plant cell》2002,14(9):2031-2043
S-Adenosyl-L-methionine:phosphoethanolamine N-methyltransferase (PEAMT; EC 2.1.1.103) catalyzes the key step in choline (Cho) biosynthesis, the N-methylation of phosphoethanolamine. Cho is a vital precursor of the membrane phospholipid phosphatidylcholine, which accounts for 40 to 60% of lipids in nonplastid plant membranes. Certain plants use Cho to produce the osmoprotectant glycine betaine, which confers resistance to salinity, drought, and other stresses. An Arabidopsis mutant, t365, in which the PEAMT gene is silenced, was identified using a new sense/antisense RNA expression system. t365 mutant plants displayed multiple morphological phenotypes, including pale-green leaves, early senescence, and temperature-sensitive male sterility. Moreover, t365 mutant plants produced much less Cho and were hypersensitive to salinity. These results demonstrate that Cho biosynthesis not only plays an important role in plant growth and development but also contributes to tolerance to environmental stresses. The temperature-sensitive male sterility caused by PEAMT silencing may have a potential application in agriculture for engineering temperature-sensitive male sterility in important crop plants.  相似文献   

14.
In plants, betaine is synthesized upon abiotic stress via choline oxidation, in which choline monooxygenase (CMO) is a key enzyme. Although it had been thought that betaine synthesis is well regulated to protect abiotic stress, it is shown here that an exogenous supply of precursors such as choline, serine, and glycine in the betaine-accumulating plant Amaranthus tricolor further enhances the accumulation of betaine under salt stress, but not under normal conditions. Addition of isonicotinic acid hydrazide, an inhibitor of glycine decarboxylase, inhibited the salinity-induced accumulation of betaine. Salt-induced accumulation of A. tricolor CMO (AmCMO) and betaine was much slower in roots than in leaves, and a transient accumulation of proline was observed in the roots. Antisense expression of AmCMO mRNA suppressed the salt-induced accumulation of AmCMO and betaine, but increased the level of choline approximately 2- 3-fold. This indicates that betaine synthesis is highly regulated by AmCMO expression. The genomic DNA, including the upstream region (1.6 kbp), of AmCMO was isolated. Deletion analysis of the AmCMO promoter region revealed that the 410 bp fragment upstream of the translation start codon contains the sequence responsive to salt stress. These data reveal that the promoter sequence of CMO, in addition to precursor supply, is important for the accumulation of betaine in the betaine-accumulating plant A. tricolor.  相似文献   

15.
Glycine betaine is an osmoprotectant found in many organisms, including bacteria and higher plants. The bacterium Escherichia coli produces glycine betaine by a two-step pathway where choline dehydrogenase (CDH), encoded by betA, oxidizes choline to betaine aldehyde which is further oxidized to glycine betaine by the same enzyme. The second step, conversion of betaine aldehyde into glycine betaine, can also be performed by the second enzyme in the pathway, betaine aldehyde dehydrogenase (BADH), encoded by betB. Transformation of tobacco (Nicotiana tabacum), a species not accumulating glycine betaine, with the E. coli genes for glycine betaine biosynthesis, resulted in transgenic plants accumulating glycine betaine. Plants producing CDH were found to accumulate glycine betaine as did F1 progeny from crosses between CDH- and BADH-producing lines. Plants producing both CDH and BADH generally accumulated higher amounts of glycine betaine than plants producing CDH alone, as determined by 1H NMR analysis. Transgenic tobacco lines accumulating glycine betaine exhibited increased tolerance to salt stress as measured by biomass production of greenhouse-grown intact plants. Furthermore, experiments conducted with leaf discs from glycine betaine-accumulating plants indicated enhanced recovery from photoinhibition caused by high light and salt stress as well as improved tolerance to photoinhibition under low temperature conditions. In conclusion, introduction of glycine betaine production into tobacco is associated with increased stress tolerance probably partly due to improved protection of the photosynthetic apparatus.  相似文献   

16.
In Escherichia coli the osmoprotective compound glycine betaine is produced from choline by two enzymes; choline dehydrogenase (CDH) oxidizes choline to betaine aldehyde and then further on to glycine betaine, while betaine aldehyde dehydrogenase (BADH) facilitates the conversion of betaine aldehyde to glycine betaine. To evaluate the importance of BADH, a BADH/CDH fusion enzyme was constructed and expressed in E. coli and in Nicotiana tabacum. The fusion enzyme displayed both enzyme activities, and a coupled reaction could be measured. The enzyme was characterized regarding molecular weight and the dependence of the enzyme activities on environmental factors (salt, pH, and poly(ethylene glycol) addition). At high choline concentrations, E. coli cells expressing BADH/CDH were able to grow to higher final densities and to accumulate more glycine betaine than cells expressing CDH only. The intracellular glycine betaine levels were almost 5-fold higher for BADH/CDH when product concentration was related to CDH activity. Also, after culturing the cells at high NaCl concentrations, more glycine betaine was accumulated. On medium containing 20 mM choline, transgenic tobacco plants expressing BADH/CDH grew considerably faster than vector-transformed control plants.  相似文献   

17.
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is an important enzyme that catalyzes the last step in the synthesis of glycine betaine, a compatible solute accumulated by many plants under various abiotic stresses. In barley ( Hordeum vulgare L.), we reported previously the existence of two BADH genes ( BBD1 and BBD2 ) and their corresponding proteins, peroxisomal BADH (BBD1) and cytosolic BADH (BBD2). To investigate their enzymatic properties, we expressed them in Escherichia coli and purified both proteins. Enzymatic analysis indicated that the affinity of BBD2 for betaine aldehyde was reasonable as other plant BADHs, but BBD1 showed extremely low affinity for betaine aldehyde with apparent Km of 18.9 μ M and 19.9 m M , respectively. In addition, Vmax/Km with betaine aldehyde of BBD2 was about 2000-fold higher than that of BBD1, suggesting that BBD2 plays a main role in glycine betaine synthesis in barley plants. However, BBD1 catalyzed the oxidation of ω-aminoaldehydes such as 4-aminobutyraldehyde and 3-aminopropionaldehyde as efficiently as BBD2. We also found that both BBDs oxidized 4- N -trimethylaminobutyraldehyde and 3- N -trimethylaminopropionaldehyde.  相似文献   

18.
Production of the compatible solute glycine betaine from its precursors choline or glycine betaine aldehyde confers a considerable level of tolerance against high osmolarity stress to the soil bacterium Bacillus subtilis. The glycine betaine aldehyde dehydrogenase GbsA is an integral part of the osmoregulatory glycine betaine synthesis pathway. We strongly overproduced this enzyme in an Escherichia coli strain that expressed a plasmid-encoded gbsA gene under T7φ10 control. The recombinant GbsA protein was purified 23-fold to apparent homogeneity by fractionated ammonium sulfate precipitation, ion-exchange chromatography on Q-Sepharose, and subsequent hydrophobic interaction chromatography on phenyl-Sepharose. Molecular sieving through Superose 12 and sedimentation centrifugation through a glycerol gradient suggested that the native enzyme is a homodimer with 53.7-kDa subunits. The enzyme was specific for glycine betaine aldehyde and could use both NAD+ and NADP+ as cofactors, but NAD+ was strongly preferred. A kinetic analysis of the GbsA-mediated oxidation of glycine betaine aldehyde to glycine betaine revealed K m values of 125 μM and 143 μM for its substrates glycine betaine aldehyde and NAD+, respectively. Low concentrations of salts stimulated the GbsA activity, and the enzyme was highly tolerant of high ionic conditions. Even in the presence of 2.4 M KCl, 88% of the initial enzymatic activity was maintained. B. subtilis synthesizes high levels of proline when grown at high osmolarity, and the presence of this amino acid strongly stimulated the GbsA activity in vitro. The enzyme was stimulated by moderate concentrations of glycine betaine, and its activity was highly tolerant against molar concentrations of this osmolyte. The high salt tolerance and its resistance to its own reaction product are essential features of the GbsA enzyme and ensure that B. subtilis can produce high levels of the compatible solute glycine betaine under conditions of high osmolarity stress. Received: 2 May 1997 / Accepted: 2 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号