首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
采集长白山脉龙岗支脉老秃顶子南坡3个不同海拔梯度森林(岳桦林、针阔混交林、红松林)土壤,进行室内温度梯度培养试验,研究土壤碳矿化速率(Cmin)和土壤β-1,4-葡萄糖苷酶(βG)动力学参数及温度敏感性.结果表明: 海拔和温度对Cmin均有显著影响,3种森林土壤Cmin均随着培养温度升高而增加,且岳桦林土壤Cmin最高.3种森林土壤碳矿化速率温度敏感性\[Q10(Cmin)\]大小为岳桦林>红松林>针阔混交林,但差异不显著.3种森林土壤βG动力学参数最大反应速率(Vmax)和米氏常数(Km)均随培养温度升高而增加,Vmax的温度敏感性\[Q10(Vmax)\]为1.78~1.90,Km的温度敏感性\[Q10(Km)\]为1.79~2.00.岳桦林Q10(Vmax)/Q10(Km)值显著高于红松林和针阔混交林,表明高海拔岳桦林土壤有机碳水解酶动力学参数受温度升高影响最大.  相似文献   

2.
研究了温度对长白山阔叶红松林、鼎湖山常绿阔叶林2个不同纬度的森林土壤有机碳矿化速率和酶动力学参数的影响.结果表明:土壤有机碳矿化速率(Cmin)随着温度的增加而增加,长白山土壤Cmin及其温度敏感性(Q10(Cmin))显著高于鼎湖山土壤.长白山土壤β-1,4-葡萄糖苷酶(βG)和β-1,4-N-乙酰葡糖氨糖苷酶(NAG)的酶动力学参数潜在最大反应速率(Vmax)和半饱和常数(K_m)高于鼎湖山土壤,但鼎湖山土壤的催化效率(Vmax/K_m)高于长白山土壤,表明随着温度的升高,土壤βG和NAG的Vmax和Vmax/K_m增加,K_m降低,即酶与底物的结合程度增加.鼎湖山土壤βG的Q10(Vmax)、Q10(Km)高于长白山土壤,这与土壤Q10(Cmin)结果不一致.增温对长白山和鼎湖山森林土壤有机碳矿化及酶动力学参数的影响机制不同,在土壤生物化学过程对增温响应的模型中应区别考虑.  相似文献   

3.
李小珍  刘映红 《昆虫学报》2011,54(9):982-988
【目的】为揭示南亚果实蝇Bactrocera tau (Walker)不同发育阶段体内多酚氧化酶的活性与性质。【方法】以邻苯二酚为底物, 在415 nm波长下测定了南亚果实蝇1, 2和3龄幼虫、 蛹以及成虫多酚氧化酶的活性和动力学参数。【结果】南亚果实蝇在不同发育阶段, 多酚氧化酶的活性存在明显差异, 通常3龄幼虫中活性最高, 为434.42 U/mg; 蛹中最低, 为231.05 U/mg。在pH 6.5时, 南亚果实蝇不同发育阶段多酚氧化酶的活性分别为265.42, 358.34, 444.42, 210.02和373.99 U/mg, 但当pH值高于7.0或低于5.0时, 多酚氧化酶的活性则明显下降。在温度为34℃和37℃时, 南亚果实蝇各发育阶段多酚氧化酶的活性均较高, 当温度高于40℃或低于27℃时, 活性则明显下降。以邻苯二酚为底物, 2龄幼虫中多酚氧化酶的Km值(3.10 mmol/min)和Vmax(476.19 mmol/L)较大, 说明多酚氧化酶对底物邻苯二酚催化能力强; 蛹中多酚氧化酶的Km(0.63 mmol/min)和Vmax(50.25 mmol/L)较小, 说明多酚氧化酶对底物的亲和力和催化能力弱。当以L-DOPA为底物时, 3龄幼虫中多酚氧化酶的Km值和Vmax较大, 分别为0.49 mmol/min和188.68 mmol/L; 蛹中多酚氧化酶的Km值和Vmax较小, 分别为0.25 mmol/min和21.79 mmol/L。【结论】南亚果实蝇体内多酚氧化酶在不同温度和pH值下的活性和动力学参数与虫体发育阶段密切相关。  相似文献   

4.
以中亚热带马尾松林和苦槠林为对象,原位收集根际和非根际土壤、树木不同生态功能的根系,开展15 ℃、25 ℃、35 ℃和45 ℃恒温培养模拟试验,采用密闭气室碱液吸收法测定53 d内CO2释放的动态变化.结果表明: 两种森林类型不同温度下土壤矿化CO2释放速率的根际效应介于1.12~3.09,且培养前期高于培养后期;15 ℃下马尾松林和苦槠林差异不显著,25 ℃和35 ℃下前者低于后者,45 ℃下则相反.不同培养温度下两树种吸收根分解的CO2释放速率均高于过渡根和贮存根,且马尾松均低于苦槠.两种森林类型CO2释放的Q10值均为土壤(1.21~1.83)显著高于根系(0.96~1.36).两种森林类型土壤矿化CO2释放的Q10值差异不显著,而马尾松根系分解CO2释放的Q10值高于苦槠.推断全球变暖导致的土壤矿化CO2释放的增量将远远高于根系分解,且马尾松林高于苦槠林;地带性顶极群落应对气候变化的抵抗力强于先锋树种群落.  相似文献   

5.
不同环境因子对樟子松人工林土壤有机碳矿化的影响   总被引:8,自引:0,他引:8  
土壤有机碳矿化是土壤向大气释放CO2的最大净输出途径,其与植被的净初级生产力的差值是判断生态系统碳源或碳汇的关键。本研究以科尔沁沙地10年生樟子松人工林生态系统为研究对象,采用室内培养实验方法,测定了不同温度、土壤含水量以及碳、氮添加条件下土壤有机碳矿化的速率。结果表明:土壤有机碳矿化速率随温度和土壤含水量的升高分别呈指数和线性增长,不同的土壤水分条件下土壤有机碳矿化的温度敏感性不同;在土壤含水量最小时(田间持水量的10%),土壤有机碳矿化的温度敏感性最低;土壤有机碳矿化对水分的敏感性在低温条件下(10℃)显著低于在适温和高温条件下(20℃~30℃)。土壤中有机碳含量的增加显著提高土壤碳矿化速率,氮的添加对土壤有机碳矿化没有显著影响,但随着土壤有机碳含量的增加,土壤氮素含量对土壤碳矿化速率产生影响。  相似文献   

6.
论淡色库蚊敌百虫抗性品系的抗药性机理   总被引:1,自引:0,他引:1  
黄刚 《昆虫学报》1989,32(1):44-51
分别测定了淡色库蚊(Culex pipiens pallens)敏感品系(SEN)及敌百虫抗性品系(RD)雌成蚊的乙酰胆碱酯酶(AchE)对硫代乙酰胆碱(Atch)的米氏常数(Km)和最大反应速度(Vmax).SEN雌成蚊头部AchE的Km=1.2×10-4mol/L,Vmax=7.7×10-3mol/L(产物);胸部的Km=0.8×10-4mol/L,Vmax=6.5×10-3mol/L(产物).RD雌成蚊头部AchE的Km=5.7×10-4mol/L,Vmax=25×10-3mol/L(产物);胸部的Km=0.8×10-4mol/L,Vmax=9.5×10-3mol/L(产物).结果表明:1.SEN和RD二者的雌成蚊,它们自身头、胸间AchE是不同质的,是以同工酶的形式存在,因此RD雌成蚊头部AchE的性质与SEN雌成蚊的头部有显著差异也是由AchE同工酶的变异所造成.2.RD雌成蚊头部AchE在量上与SEN间也存在明显的差异.因此可以认为RD雌成蚊对有机磷产生抗性的主要机理是头部AchE在质和量上产生了变异.由于羧酸酯酶不是对具有磷酸酯键的有机磷制剂作用的靶子酶,因而不是敌百虫抗性产生的主要原因.  相似文献   

7.
土壤碳矿化(或土壤异养呼吸)的温度敏感性和激发效应是深入揭示土壤呼吸控制机理及其对未来气候变化响应与适应的重要研究方向。该文以自由放牧(FG0)、封育11年(FG11)、封育31年(FG31)的羊草(Leymus chinensis)草地为研究对象, 通过0、5、10、15、20、25 ℃培养, 探讨了封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响。结果表明: 封育年限、添加葡萄糖、培养温度和培养时间对土壤碳矿化速率均具有显著的影响, 不同因素间存在显著的交互效应(p < 0.000 1)。FG0的羊草草地土壤碳矿化累积量显著高于FG11和FG31的, 在添加葡萄糖处理下也呈现相同的趋势。长期封育降低了羊草草地土壤碳矿化的激发效应。在添加葡萄糖后, 培养前7天的土壤碳矿化的激发效应随温度增加而增加, 增加2.28-9.01倍; 在整个56天培养期间, 激发效应介于2.21-5.10倍, 最高值出现在10或15 ℃。土壤碳矿化速率可用经典的指数方程来表示, FG0草地的土壤碳矿化的温度敏感性指数(Q10)大于长期封育草地(FG11和FG31); 与未添加处理相比, 添加葡萄糖显著增加了土壤碳矿化速率的温度敏感性, 即在添加葡萄糖后土壤微生物呼吸受温度的影响更大。长期封育会降低羊草草地土壤的碳矿化速率、温度敏感性和激发效应, 从而降低土壤碳周转速率和释放速率, 使内蒙古地区长期封育草地仍然具有碳固持能力。  相似文献   

8.
稻田土壤有机碳矿化及其激发效应对磷添加的响应   总被引:3,自引:0,他引:3  
采用室内模拟培养和13C同位素标记技术相结合的研究方法,探讨了在葡萄糖与无机氮肥共施的条件下,土壤有机碳矿化及其激发效应对外源磷添加的响应,以揭示土壤有机碳矿化的碳磷耦合调控机制.结果表明:外源磷的输入加快了CO_2的释放,但抑制了CH_4的释放;在整个土壤淹水培养期间,磷添加抑制了土壤碳矿化释放CH_4总量的53.1%,其中外源葡萄糖-13C矿化成13CH_4的总量降低了70.5%;磷添加促使通过微生物转化的葡萄糖-13C向易利用态碳库的分配比例增加了3.6%,显著提高土壤有机碳快库矿化速率,缩短土壤碳矿化周期.土壤培养前期,外源有机质的添加表现为短暂的负激发效应;随着葡萄糖不断矿化分解,CO_2累积激发效应(PECO_2)总体上呈现先增加后下降的趋势,而CH_4累积激发效应(PECH_4)稳步增加最终保持基本稳定状态;培养结束时(100 d),在磷添加条件下,PECO_2增强32.3%,PECH_4显著降低93.4%.冗余分析和Pearson分析表明,电导率、氧化还原电位和溶解有机碳对稻田土壤碳矿化的影响最为显著;速效磷与13CH_4、PECH_4呈极显著负相关.在外源有机质添加条件下,磷的添加能够抑制CH_4排放及其激发效应,促进土壤有机质的矿化和养分释放,提高土壤原有有机碳的可利用性,促进稻田土壤有机碳循环.  相似文献   

9.
以竹叶眼子菜(Potamogeton malaianus)无菌系种苗为试验材料,研究了不同水体营养浓度水平(低营养:TN0.213 mg·L-1,TP 0.0093 mg·L-1;中营养:TN 0.71 mg·L-1,TP 0.031 mg·L-1;高营养:TN 7.1 mg·L-1,TP0.31 mg·L-1)对其生长与NH4+-N的吸收动力学参数的影响。结果表明,不同浓度水体营养对竹叶眼子菜生长的影响较小,而NH4+-N的吸收动力学参数有显著差异。竹叶眼子菜在高、中和低营养培养条件下的NH4+-N最大吸收速率Vmax分别为41.1、29.1、21.1μmol·g-1·h-1,米氏常数Km分别为0.356、0.306、0.122 mmol·L-1。竹叶眼子菜营养吸收动力学与其生长环境关系紧密,在低浓度生长环境中时,竹叶眼子菜可以通过降低Km值来提高对营养离子的亲和力以满足营养需求;在高浓度生长环境中,该植物通过增大吸收潜力来适应高营养。  相似文献   

10.
温度和湿度对长白山两种林型下土壤氮矿化的影响   总被引:52,自引:7,他引:45  
在实验室条件下,将不同含水量的两种森林类型的土柱分别置于5,15,25,和35℃条件下培养30d,分析培养前后的NH^ 4-N和NO^-3含量,确定土壤的净矿化速率,结果表明,在温度为5-35℃范围内,N的矿化速率与温度呈正相关,在一定的含水量范围内(0.46-0.54kg.kg^-1),净矿化速率随湿度的增加而升高,当含水量超过该范围,净矿化速率则随含量而降低,温度和湿度对土壤的矿化和硝化过程存在较明显的交互作用,建立了二维的方程(T,θ)来描述温度和湿度对土壤N矿化速率的影响,阔叶红松林土壤N矿化的最佳条件是温度35℃,含水量0.51kg.kg^-1,云冷杉林土壤N矿化的最佳条件是35℃,含水量0.52kg.kg^-1.  相似文献   

11.
对产自乳酸菌Enterococcuze fecalis TN-9的蛋白酶,进行了硫酸铵沉淀,DEAE—Sephadex A-25以及DEAE Cellulofine A-500离子交换层析的3步纯化和特性研究。纯化酶Native PAGE显示1条蛋白带。SDSPAGE和凝胶层析分子量分别为30ku及69ku。纯化酶最适作用温度为30℃,最适作用PH为7.5~8.0,在pH6.0~9.5和45℃以下条件下稳定,在0℃下显示了6.1%的相对活性,60℃以上热处理完全失去酶活。该酶被EDTA-2Na,Hg^2+、Cu^2+、Ni^2+、Ag^2+、Co^2+及Pepstatin A不完全抑制。Zn^2+对蛋白酶具有明显的激活作用。纯化酶作用于偶氮酪蛋白的Km和Vmax分别为0.098%和72mg/(h·mg)。该酶为N末端VGSEVTLKNS的明胶酶(Gelatinase)的一种,性质属于低温蛋白酶。  相似文献   

12.
从氧化葡萄糖酸杆菌(Gluconobacter oxydans)的基因组DNA上扩增出木糖醇脱氢酶基因xdh,构建了诱导型表达载体pSE-xdh,导入E.coli JM109后获得了高效表达木糖醇脱氢酶基因的重组菌JM109/pSE-xdh。通过HisTrap HP亲和层析和SephacrylS 300分子筛两步纯化从细胞中得到纯酶,并对酶学性质进行研究。XDH最适还原反应的pH值为5.0,最适还原反应的温度为35℃;最适氧化反应的pH值为11.0,最适氧化反应的温度为30℃。重组菌中的XDH依赖NADH,对NADH的米氏常数Km=57.8 mmol/L,最大反应速率Vmax=1209.1 mmol/(ml·min)。重组菌的XDH酶活力为13.9 U/mg。利用重组菌和原始菌混合静止细胞转化D 木酮糖,16 h 28.0 g/L D木酮糖生成16.7 g/L木糖醇,而原始菌单独转化只生成8.3 g/L木糖醇。  相似文献   

13.
武夷山低海拔和高海拔森林土壤有机碳的矿化特征   总被引:2,自引:0,他引:2  
研究不同海拔土壤有机碳矿化对深入认识不同海拔森林土壤有机碳动态变化具有重要意义.本文以武夷山低海拔和高海拔森林土壤为研究对象,通过室内模拟其在各自年平均气温(17、9℃)条件下的矿化培养试验,探讨土壤有机碳矿化特征的差异.结果表明:培养126 d后,尽管高海拔森林土壤的有机碳含量显著高于低海拔森林土壤,但低海拔和高海拔森林土壤在各自环境温度背景下的有机碳累积矿化量并无显著差异.一级动力学方程均能较好地模拟高低海拔森林土壤有机碳矿化特征,高海拔和低海拔森林土壤有机碳潜在矿化量(CP)和矿化速率常数均无显著差异,但低海拔土壤C_P/SOC值和矿化率显著高于高海拔土壤,表明在环境温度背景下,低海拔土壤固碳能力低于高海拔土壤.随着培养时间增加,高海拔土壤微生物生物量碳和微生物熵显著高于低海拔土壤,表明高海拔土壤微生物的碳同化量高于低海拔土壤微生物,有利于有机碳的积累.高海拔森林土壤中的β-葡萄糖甘酶和纤维素水解酶高于低海拔森林土壤,说明高海拔土壤微生物可能更多地分解活性碳.未来气候变暖可能暗示着会降低高海拔土壤有机碳固碳能力和微生物碳利用效率,从而导致土壤有机碳储量下降.  相似文献   

14.
构建了水稻NADP-ME_2基因cDNA的原核表达载体pQE30,并诱导表达出有生物学功能的融合蛋白。用Ni-NTA琼脂糖亲和层析纯化出NADP-ME_2融合蛋白,并测定了融合蛋白酶学特性(V_(max)、K_m、K_(cat)、底物特异性)。用纯化的NADP- ME_2融合蛋白免疫家兔,制备出抗水稻NADP-ME特异性抗体。全蛋白双向电泳后Western印迹表明水稻中至少有4个NADP-ME家族蛋白质成员。  相似文献   

15.
温度对不同粘粒含量稻田土壤有机碳矿化的影响   总被引:16,自引:0,他引:16  
模拟了亚热带地区3种不同粘粒含量的水稻土(砂壤土、壤粘土、粉粘土)在5种温度(10、15、20、25和30℃)下的有机碳(SOC)矿化特征,分析SOC矿化对温度变化的响应.结果表明:在160d的培养期内,温度对3种水稻土SOC矿化量的影响有一定差异,30℃时砂壤土、壤粘土和粉粘土SOC矿化量分别是10℃时的3.5、5.2和4.7倍.在较低温度(≤20℃)下,SOC矿化速度较低且相对稳定;在较高温度(≥25℃)下,前期SOC矿化速度较高,随着培养时间的延长逐渐降低,并趋于稳定.3种水稻土SOC矿化的温度系数(Q10)随培养时间出现波动,砂壤土的Q10平均值最低,为1.92,壤粘土和粉粘土的Q10平均值较接近,分别为2.37和2.32;3种土壤矿化速率常数(k)与温度呈极显著的指数相关(P<0.01).3种水稻土有机碳矿化对温度变化的响应敏感度依次为壤粘土>粉粘土>砂壤土.  相似文献   

16.
目的:从中国高校工业微生物资源与信息中心(CICIM-CU)细菌库中分离具有产脱枝酶酶活的细菌并鉴定,进行酶学性质的研究。方法:通过碘显色平板法筛选产酶菌株,利用16S rDNA确定其属种。对每一株产脱枝酶的细菌进行初步的酶学性质研究。结果:从4005株细菌中筛选出45株产脱枝酶的细菌,建立了产脱枝酶细菌的细菌库。酶学性质表明CICIM B272、CICIMB1-30两株菌产生的脱枝酶,酶反应的最适温度分别为70℃6、0℃,最适pH分别为6.0、5.5,来源于上述两种不同属种的脱枝酶在30-70℃反应条件下,酶在pH 4.5-8.5范围内活性稳定,Li+、Na+、K+、Mg2+、Mn2+对两者酶活均有显著的激活作用,而Cu2+、Fe3+及EDTA对两者均有显著的抑制作用,Mn2+、Ca2+分别对两者的热稳定性具有很好的提升作用。以支链淀粉为底物的动力学常数Km分别为352.883mg/mL、4.5814mg/mL,Vmax分别为30.03mg/min.mL、0.4575mg/min.mL。结论:不同属种的脱枝酶酶学性质差别显著。  相似文献   

17.
通过功能筛选方法,从中国南海海洋表层海水微生物元基因组文库筛选得到了6个β-葡萄糖苷酶阳性克隆。对其中的一个阳性克隆pSB47B2进一步亚克隆和序列分析,获得一新型β-葡萄糖苷酶基因(命名为bgl1B)开放阅读框。以pET22b(+)为载体、Escherichia coli BL21(DE3)为宿主菌,bgl1B被高效活性重组表达。通过Ni-NTA亲和层析柱纯化了重组Bgl1B(rBgl1B)。纯化的rBgl1B催化pNPG水解反应的最适pH为6.5,最适温度为40oC。在最适反应条件下,rBgl1B水解pNPG的活性达到39.7U/mg,Km和Vmax分别为0.288mmol/L、36.9μmol/min。纤维二糖是rBgl1B的有效作用底物,其Km和Vmax分别为0.173mmol/L、35μmol/min。但rBgl1B不能催化转化蔗糖、乳糖、麦芽糖以及CMC。rBgl1B催化pNPG的水解反应对高浓度的Na+有较好的耐受性,而低浓度的Ca2+、Mn2+对该酶活有一定促进作用。不同于许多来源于真菌的酸性β-葡萄糖苷酶,rBgl1B在pH7.0~9.0范围内具有比较高的酶活力并具有较好的稳定性。  相似文献   

18.
通过室内培育试验,分析了土地利用方式转变后灰色森林土有机碳矿化过程及其对温度变化的响应特征.结果表明:原始林转变为农田后,0~10 cm、10~20 cm的土壤有机碳和全氮含量分别下降了68.5%、76.8%和40.5%、44.4%;而农田土壤有机碳的平均矿化速率和累积矿化量仅分别为原始林的24.4%~43.2%和9.20%~13.7%.低温条件下(<25 ℃)土壤有机碳矿化的温度敏感性显著高于高温条件下(>25 ℃).低温条件下(<25 ℃)两种利用方式的土壤有机碳矿化对温度变化的敏感性没有显著差异;但高温条件下(>25 ℃),农田0~10 cm土壤有机碳矿化的温度敏感性高于原始林,而农田10~20 cm土壤有机碳矿化的温度敏感性明显较低.  相似文献   

19.
Temperature is a major environmental variable influencing microbial respiration in soils. Thus, understanding how heterotrophic processes in soils may respond to potential increases in temperature is crucial for the prediction of the response of forest carbon budgets to climate change. We investigated carbon mineralization rates from eight European forest soils in relation to soil temperature. Mineral soil samples were collected from eight mature forest sites in the European network CARBOEUROFLUX and were incubated in the laboratory for ca. 270 days at four temperatures: 4, 10, 20 and 30°C. In all soils, carbon mineralization rates decreased over time when incubated at high temperatures of 20 and 30°C. In this study, we explore the different models available to analyse long-term incubation data. Carbon mineralization rates were best predicted by a first-order, two-compartment model that predicted carbon mineralization as a function of time and temperature using all of the incubation data. We found very small fractions (1–9%) of labile carbon in the upper mineral soils. Despite large differences among sites, we found higher carbon mineralization rates and larger amounts of labile carbon in the broadleaf than in the conifer forest soils. No significant differences in temperature sensitivity among the sites (average Q 10 of 2.88 using the two-compartment model) were observed, as estimated with all methods used. Although not statistically significant, the sensitivities of the rate constant of the labile fractions tended to be higher than those for the rate constant of the recalcitrant fractions. Thus, the results of this modelling exercise suggest that despite large variation among sites, a single temperature sensitivity parameter can be used for a range of soils over the range of temperatures we used (4–30°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号