首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
耐冷皮壳正青霉一种木聚糖酶的纯化与性质研究   总被引:1,自引:0,他引:1  
研究了耐冷皮壳正青霉Eupenicillium crustaceum一种木聚糖酶的纯化和酶学性质。采用硫酸铵沉淀和阴离子交换层析的方法,从耐冷皮壳正青霉液体发酵液中分离纯化出一种亚基分子量35kDa的木聚糖酶。酶学性质研究表明,酶的最适pH值为5.5,在pH4.5-6.5范围内具有较高的催化活性。最适温度为50℃,20℃下酶活为最高酶活的40%。Ag+和Fe2+大幅度提高木聚糖酶的酶活,而Mn2+和Hg2+强烈抑制木聚糖酶的活性。同时,该木聚糖酶具有严格的底物特异性。  相似文献   

2.
绵毛嗜热丝孢菌木聚糖酶的纯化与性质   总被引:2,自引:0,他引:2  
研究了绵毛嗜热丝孢菌Thermomyces lanuginosus W205胞外木聚糖酶的纯化与性质。粗酶液经硫酸铵沉淀和Q-Sepharose FF离子交换层析即可得到电泳纯木聚糖酶,回收率为46.6%,比酶活为1396.9U/mg。该酶的最适pH和最适温度分别为pH7.0和75℃,pH稳定范围为5.5-10.8,70℃处理30min残存酶活在70%以上。薄层层析结果显示该酶水解桦木木聚糖的主要产物是木二糖和木三糖,并且能够通过转糖苷作用将木三糖转化为木二糖。该木聚糖酶易于纯化并且具有较宽的pH稳定性及良好的热稳定性,具有较大的潜在工业应用价值。  相似文献   

3.
碱性木聚糖酶产酶菌株—芽胞杆菌M-26的选育   总被引:1,自引:0,他引:1  
从造纸厂的废水中采集样品,以木聚糖为唯一碳源初筛菌株,然后用刚果红透明圈平板选育,最后通过摇瓶发酵选育出碱性木聚糖酶高产菌株M-26,基础产酶活力达330 IU/mL;通过菌种形态学、培养特征和16S rDNA鉴定为短小芽胞杆菌;酶学性质研究表明:最适作用温度和pH分别为55℃和8.0,且具有一定的耐碱性;通过发酵条件研究,M-26最高产酶活力可达625 IU/mL。  相似文献   

4.
碱性木聚糖酶在碱性条件下催化水解木聚糖,广泛应用于造纸、纺织等领域.着重对短小芽胞杆菌M-11产碱性木聚糖酶的发酵条件进行初步的探索.研究了菌株的生长曲线、确定最佳接种龄为16 h、最佳接种量为1%;确定最适碳源浓度为7%、最适单一氮源为氯化铵、其浓度为1.0%、最适无机盐为氯化铁、其浓度为3 mmol/L;在此基础之上进行6因素3水平的正交试验,确定最适产酶培养基组成:麸皮5%,接种量3%,氯化铵1.2%,氯化铁3.5 mmol/L,硫酸镁0.03%,氯化钠5 mmol/L,磷酸氢二钾0.4%;最适培养条件:接种龄16 h,初始pH 8.0,温度37℃,300 mL摇瓶装液量50 mL,摇床转速220 r/min,发酵周期48 h.通过对发酵条件的优化使发酵液酶活达613 IU/mL.无机氮源为其最适氮源,因此短小芽胞杆菌M-11在碱性木聚糖酶的产品开发上优于短小芽胞杆菌M -26.  相似文献   

5.
Shan ZQ  Zhou JG  Zhou YF  Yuan HY  Lv H 《遗传》2012,34(3):356-365
从青海盐碱湖土壤中筛选到25株产碱性木聚糖酶的菌株,其中编号为QH14的菌株产酶量达648.79U/mL,纯化后比活可达1148.56 U/mg。16 SrDNA鉴定表明菌株QH14属于短小芽孢杆菌,命名为Bacillus sp.QH14。从该菌株的基因组中克隆获得了碱性木聚糖酶编码基因XynQH14,并在大肠杆菌E.coliBL21(DE3)中获得重组表达。通过Ni-NTA亲和层析分离纯化后的重组QH14木聚糖酶比活达700.47 U/mg。该碱性木聚糖酶的酶促反应最适温度为60℃,最适pH为9.2;55℃处理1h仍保持50%的活力;在pH7.0~11条件下37℃处理酶液24 h后均保持80%以上的活力,且在pH11缓冲溶液中50℃处理24 h仍保持31.02%的酶活,显示了该碱性木聚糖酶较好的热稳定性和碱稳定,提示该碱性木聚糖酶在制浆造纸、纺织等行业的应用潜力。  相似文献   

6.
单志琼  周峻岗  周宇飞  袁汉英  吕红 《遗传》2012,34(3):356-365
从青海盐碱湖土壤中筛选到25株产碱性木聚糖酶的菌株, 其中编号为QH14的菌株产酶量达648.79 U/mL, 纯化后比活可达1148.56 U/mg。16 SrDNA鉴定表明菌株QH14属于短小芽孢杆菌, 命名为Bacillus sp. QH14。从该菌株的基因组中克隆获得了碱性木聚糖酶编码基因XynQH14, 并在大肠杆菌E.coliBL21(DE3)中获得重组表达。通过Ni-NTA亲和层析分离纯化后的重组QH14木聚糖酶比活达700.47 U/mg。该碱性木聚糖酶的酶促反应最适温度为60℃, 最适pH为9.2; 55℃处理1h仍保持50%的活力; 在pH7.0~11条件下37℃处理酶液24 h后均保持80%以上的活力, 且在pH11缓冲溶液中50℃处理24 h仍保持31.02%的酶活, 显示了该碱性木聚糖酶较好的热稳定性和碱稳定, 提示该碱性木聚糖酶在制浆造纸、纺织等行业的应用潜力。  相似文献   

7.
目的:为城市屠宰场牛羊胃容物类的生物垃圾型可再生资源的潜在工业化开发应用(城市无害鲜生物垃圾变废为宝的低碳生物循环经济工程)提供了部分可靠科学依据.方法:M-112木霉菌固态发酵羊胃容物的粗酶提取液,经20~60%饱和度的硫酸铵粗分级分离、Sephadex G-25脱盐、Sephadex G-150到Sephadex G-100分子筛顺序纯化,通过蛋白质测定、酶活测定、SDS-PAGE和底物-PAGE电泳等.结果:制备到一种分子量约为64.7kDa的电泳纯木聚糖酶,其回收率为5.59%,纯化倍数10.43,比活力为253.36IU/mg.纯化出的木聚糖酶,经性质研究表明,其Km=11.20g/L,Vmax=0.70μmoL/min;最适温度为65℃,最适pH为6.0,该酶在中温条件下稳定性好,在酸性至弱碱性(pH 3.0~8.0)条件下稳定性好.结论:采用改良的凝胶色谱技术,首次纯化出木霉菌固态发酵羊胃容物所产的木聚糖酶.  相似文献   

8.
对枯草芽孢杆菌Bacillus sublitis JH-1胞外木聚糖酶的纯化及酶学性质进行了研究。通过(NH4)2SO4分级沉淀法、透析除盐、DEAE-Sepharose FF弱阴离子交换层析等方法,从枯草芽孢杆菌Bacillus sublitis JH-1发酵液中分离纯化得到了电泳纯的木聚糖酶,其相对分子质量为3.45×104,比活力为75 899.68 U/mg。酶学性质研究结果表明:该酶的最适p H为6.0,在最适p H条件下保温2 h后仍能保持75%的活力,而p H越高,活力下降越快,表明为酸性木聚糖酶;最适温度为55℃,在50~60℃保温2 h后仍具有70%左右相对较高的活性,说明该酶具有较强的耐高温性;Fe2+、Mg2+、Ca2+、Zn2+、Ba2+和低浓度(5 mmol/L)的Fe3+对酶的活性有促进作用,而Mn2+和高浓度(10mmol/L)的Fe3+对酶的活性有抑制作用。  相似文献   

9.
研究一株新的嗜热拟青霉J18的固体发酵产木聚糖酶的纯化和性质。固体发酵的粗酶液经硫酸铵沉淀、凝胶过滤层析和离子交换层析得到了一种分子量约为26 kDa的电泳纯木聚糖酶,酶活力回收率为33.5%,纯化了5.27倍。该木聚糖酶具有很好的温度和pH稳定性,在pH7.0~pH 9.0下,60℃处理24 h,酶活力能保存80%以上。该酶水解玉米芯木聚糖生成以木二糖、木三糖和木四糖为主的低聚木糖,薄层层析分析表明不含木糖,适合生产低聚木糖。  相似文献   

10.
粗毛栓菌诱变菌株SAH-12漆酶的分离纯化及酶学性质研究   总被引:1,自引:0,他引:1  
粗毛栓菌Trametes gallica诱变菌株SAH-12是通过紫外诱变选育所得的漆酶高产菌株,Active-PAGE分析表明SAH-12在高氮低碳无机盐培养液(LM3)中至少分泌3种漆酶同工酶(Lac1、Lac2、Lac3)。采用硫酸铵盐析、透析和Sephadex-G75分子筛层析从其培养液中分离纯化得到电泳纯的Lac1,纯化倍数6.54,酶活性回收59.7%。Lac1经SDS-PAGE验证为一条带,其表观分子量为61.5kDa。Lac1为一种糖蛋白,含糖量11.6%,等电点pI4.40,催化氧化底物ABTS的最适反应温度为60℃,最适pH为2.6,Km值为25μmol/L。Lac1在40℃(pH4.0)以下和pH1.5~5.0(28℃)范围内稳定。金属离子Fe2+、Ag+、Hg2+和Cr3+与抑制剂DTT、SDS、EDTA和DMSO对Lac1有抑制作用,其中Fe2+和DTT完全抑制酶活,而Cu2+对酶有明显激活作用,Mn2+、Zn2+对酶活影响不大。Lac1不仅可使一些合成染料明显脱色,而且对苹果汁多酚祛除也有较好效果。40℃用该酶(1U/mL)处理苹果汁5h,其多酚含量可降低40%。  相似文献   

11.
《Process Biochemistry》2010,45(5):731-737
Separation of 2,3-butanediol from the fermentation broth is a difficult task that has become a bottleneck in industrial production. Aqueous two-phase systems composed of hydrophilic solvents and inorganic salts could be used to extract 2,3-butanediol from fermentation broth. The ethanol/ammonium sulfate system was investigated in detail, including phase diagram, effect of phase composition on partition, removal of cells and biomacromolecules from the broths and recycling of ammonium sulfate. The highest partition coefficient (7.10) and recovery of 2,3-butanediol (91.7%) were obtained by a system composed of 32% (w/w) ethanol and 16% (w/w) ammonium sulfate. The maximum selective coefficient of 2,3-butanediol to glucose was 30.74 in the experimental range. In addition, cells and proteins could be simultaneously removed from the fermentation broth. The removal ratio of cells and proteins reached 99.7% and 91.2%, respectively. The recovery of ammonium sulfate in the bottom phase reached 97.14% when two volumes of methanol were added to the salt-rich phase.  相似文献   

12.
Surface-functionalized adsorbant particles in combination with magnetic separation techniques have received considerable attention in recent years. Selective manipulation on such magnetic nanoparticles permits separation with high affinity in the presence of other suspended solids. Amylase is used extensively in food and allied industries. Purification of amylase from bacterial sources is a matter of concern because most of the industrial need for amylase is met by microbial sources. Here we report a simple, cost-effective, one-pot purification technique for bacterial amylase directly from fermented broth of Bacillus megaterium utilizing starch-coated superparamagnetic iron oxide nanoparticles (SPION). SPION was prepared by co-precipitation method and then functionalized by starch coating. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID, zeta potential, and ultraviolet–visible (UV-vis) and Fourier-transform infrared (FTIR) spectroscopy. The starch-coated nanoparticles efficiently purified amylase from bacterial fermented broth with 93.22% recovery and 12.57-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the molecular mass of the purified amylase was 67 kD, and native gel showed the retention of amylase activity even after purification. Optimum pH and temperature of the purified amylase were 7 and 50°C, respectively, and it was stable over a range of 20°C to 50°C. Hence, an improved one-pot bacterial amylase purification method was developed using starch-coated SPION.  相似文献   

13.
解木聚糖类芽孢杆菌(Paenibacillus xylanilyticus)发酵液经硫酸铵分级沉淀、HiPrep26/10 Desalting柱脱盐、HiPrepDEAE FF16/10阴离子交换柱、HiPrep 16/60 Sephacryl S-100凝胶柱、HiPrep 16/10 Source 30S阳离子交换柱等,最终纯化出单一组分的木葡聚糖酶,经过SDS-PAGE电泳分析,此木葡聚糖酶相对分子量约为39 kD。该菌所产木葡聚糖酶的最适反应温度是50℃,在60℃以下较稳定;最适反应pH是7.0,在pH5.0-10.0范围内酶活力较为稳定。酶的动力学研究显示Km为65 g/L,Vmax为6.49μmol/min,kcat=10.86 s-1。底物特异性研究表明对木葡聚糖具有较高比活力。酶蛋白经质谱分析,比对结果显示与来源于Paenibacillus pabuli的木葡聚糖酶有较高同源性。本研究为首次报道解木聚糖类芽孢杆菌(P.xylanilyticus)产木葡聚糖酶。  相似文献   

14.
Streptomyces cyaneus SN32 was used in this study to produce extracellular xylanase, an important industrial enzyme used in pulp and paper industry. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by anion exchange chromatography using DEAE-Sepharose column, with 43.0% yield. The enzyme was found to be a monomer of 20.5 kDa as determined by SDS gel electrophoresis and has a pI of 8.5. The optimum pH and temperature for purified xylanase activity was 6.0 and 60-65 degrees C, respectively. The half-lives of xylanase at 50 and 65 degrees C were approximately 200 and 50 min, respectively. The xylanase exhibited K(m) and V(max) values of 11.1 mg/ml and 45.45 micromol/min/mg. The 15 residue N-terminal sequence of the enzyme was found to be 87% identical up to that of endoxylanases from Steptomyces sp. Based on the zymogram analysis, sequence similarity and other characteristics, it is proposed that the purified enzyme from S. cyaneus SN32 is an endoxylanase and belongs to Group 1 xylanases (low molecular weight - basic proteins). The purified enzyme was stable for more than 20 week at 4 degrees C. Easy purification from the fermentation broth and its high stability will be highly useful for industrial application of this endoxylanase.  相似文献   

15.
The cultivation conditions of wild-type strain V-10 and mutant strain M-1 (overproducer of endonuclease and chitinase) of Serratia marcescens optimal for extracellular lipase biosynthesis were determined. The strain V-10 displayed the maximal lipase yield (840 AU/ml) after 10-12 h of cultivation; the strain M-1 (33 AU/ml), after 25-30 h. The data showed that extracellular lipases from V-10 and M-1 can be precipitated in a weakly acid medium (pH 5.0 and 4.5, respectively). This property was used to obtain partially purified lipase preparations. The effect of the ionic composition of the reaction mixture on the activities of these enzymatic preparations was studied. Both preparations displayed highest activities in weakly alkaline media (pH 8.0); however, the wild-type strain lipase displayed a higher thermal stability and stability at alkaline pH compared with M-1 lipase. Both lipases were activated by various anionic and nonionic surfactants and inactive in the presence of cetyltrimethylammonium bromide.  相似文献   

16.
4-Androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) are the main precursors in the production of steroidal drugs from phytosterols. To carry out the bioconversion, different inoculation strategies have been proposed. We compared the use of whole fermented broth and of free resting cells of two mutant strains of Mycobacterium sp. (DSMZ2966 and DSMZ2967) in shake flasks. Also the effect of the nitrogen source (ammonium sulfate, ammonium chloride and ammonium nitrate) and the sterol to biomass ratio at high substrate concentrations (19.2 g/l and 48.1 g/l) was evaluated. We found that the bioconversion with free resting cells (cell pellets) is more efficient than that with whole fermented broth, increasing both AD and ADD production. The use of ammonium nitrate in the culture medium and low substrate to biomass ratios (close to 1.0) increased the production yield. We also found that the bioconversion can be run at high substrate concentration under non-sterile conditions.  相似文献   

17.
After growing P. pseudomallei VPA on solid medium extracellular alkaline phosphatase with a molecular weight of 93,000 AMU was isolated, and practically purified from the extract of this medium by precipitation with ammonium sulfate, subsequent gel chromatography and concentration on membrane filters. The optimum conditions for enzymatic reaction were found to be pH 9.0 and a temperature of 50 degrees C. The enzyme was resistant to freezing and to heating at a temperature of up 60 degrees C for 30 minutes, as well as to the action of pH 3.0-10.5, but became completely inactivated after heating at 90 degrees C for 10 minutes and incubation at pH 2.0 for 20 hours.  相似文献   

18.
A phosphatidylinositol phosphodiesterase from the culture broth of Bacillus cereus, was purified to a homogeneous state as indicated by polyacrylamide gel electrophoresis, by ammonium sulfate precipitation and chromatography with DEAE-cellulose and CM-Sephadex. The enzyme (molecular weight: 29000 +/- 1000) was maximally active at pH 7.2-7.5, AND NOT INFLUENCED BY EDTA, ophenanthroline, monoiodoacetate, p-chloromercuribenzoate or reduced glutathione. The enzyme specifically hydrolyzed phosphatidylinositol, but did not act on phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, under the conditions examined. The products from phosphatidylinositol of enzyme reaction were diacylglycerols and a mixture of myoinositol 1- and 1, 2-cyclic phosphates, suggesting that the enzyme was a phosphatidylinositol-specific phospholipase C. The enzyme released alkaline phosphatase quantitatively from rat kidney slices. A kinetic analysis was made on the release of alkaline phosphatase. The results suggest that phosphatidylinositol-specific phospholipase C can specifically act on plasma membrane of rat kidney slices.  相似文献   

19.
3-Methyladenine-DNA glycosylase was partially purified from human lymphoblasts and used as an enzymatic probe to assay the amounts of 3-methyladenine in DNA from cultured human fibroblasts after treatment with dimethyl sulfate. Aside from this specific alkylation product, the total number of alkylated bases was estimated after depurination by heating. Both enzyme-induced and heat-induced apurinic sites were converted to strand breaks and estimated after alkaline sucrose-gradient sedimentation. The results indicate that 3-methyladenine in cultured human fibroblasts is rapidly excised, with a half-life of about 2 hours. The rest of the alkylated purines (mostly 7-methylguanine) are removed much more slowly, with a half-life of about 20 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号