首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

2.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

3.
《植物生态学报》2014,38(8):843
利用光学仪器法能够快速、高效地测定森林生态系统的叶面积指数(leaf area index, LAI)。然而, 评估该方法测定针阔混交林LAI季节动态准确性的研究较少。该研究基于凋落物法测定了小兴安岭地区阔叶红松(Pinus koraiensis)林LAI的季节动态, 其结果可代表真实的LAI。参考真实的LAI, 对半球摄影法(digital hemispherical photography, DHP)和LAI-2000植物冠层分析仪测定的有效叶面积指数(effective LAI, Le)进行了评估。首先对DHP测定LAI过程中采用的不合理曝光模式(自动曝光)进行了系统校正。同时, 测定了光学仪器法估测LAI的主要影响因素(包括木质比例(woody-to-total area ratio, α)、集聚指数(clumping index, ΩE)和针簇比(needle-to-shoot area ratio, γE))的季节变化。结果表明: 3种不同方法测定的LAI均表现为单峰型的季节变化, 8月初达到峰值。从5月至11月, DHP测定的Le比真实的LAI低估50%-59%, 平均低估55%; 而LAI-2000植物冠层分析仪测定的Le比真实的LAI低估19%-35%, 平均低估27%。DHP测定的Le 经过自动曝光, αΩEγE校正后, 精度明显提高, 但仍比真实的LAI低估6%-15%, 平均低估9%; 相对而言, LAI-2000植物冠层分析仪测定的Le经过αΩEγE校正后, 精度明显提高, 各时期与真实的LAI的差异均小于9%。研究结果表明, 考虑木质部和集聚效应对光学仪器法的影响后, DHP和LAI-2000植物冠层分析仪均能相对准确地测定针阔混交林LAI的季节动态, 其中, DHP的测定精度高于85%, 而LAI-2000植物冠层分析仪的测定精度高于91%。  相似文献   

4.
利用光学仪器法能够快速、高效地测定森林生态系统的叶面积指数(leaf area index, LAI)。然而, 评估该方法测定针阔混交林LAI季节动态准确性的研究较少。该研究基于凋落物法测定了小兴安岭地区阔叶红松(Pinus koraiensis)林LAI的季节动态, 其结果可代表真实的LAI。参考真实的LAI, 对半球摄影法(digital hemispherical photography, DHP)和LAI-2000植物冠层分析仪测定的有效叶面积指数(effective LAI, Le)进行了评估。首先对DHP测定LAI过程中采用的不合理曝光模式(自动曝光)进行了系统校正。同时, 测定了光学仪器法估测LAI的主要影响因素(包括木质比例(woody-to-total area ratio, α)、集聚指数(clumping index, ΩE)和针簇比(needle-to-shoot area ratio, γE))的季节变化。结果表明: 3种不同方法测定的LAI均表现为单峰型的季节变化, 8月初达到峰值。从5月至11月, DHP测定的Le比真实的LAI低估50%-59%, 平均低估55%; 而LAI-2000植物冠层分析仪测定的Le比真实的LAI低估19%-35%, 平均低估27%。DHP测定的Le 经过自动曝光, αΩEγE校正后, 精度明显提高, 但仍比真实的LAI低估6%-15%, 平均低估9%; 相对而言, LAI-2000植物冠层分析仪测定的Le经过αΩEγE校正后, 精度明显提高, 各时期与真实的LAI的差异均小于9%。研究结果表明, 考虑木质部和集聚效应对光学仪器法的影响后, DHP和LAI-2000植物冠层分析仪均能相对准确地测定针阔混交林LAI的季节动态, 其中, DHP的测定精度高于85%, 而LAI-2000植物冠层分析仪的测定精度高于91%。  相似文献   

5.
蒸散发(ET)是生态系统水分循环和能量流动的重要组成部分,准确估算ET及其各组分,对认识生态生理过程对水分平衡和植物水分利用策略的影响具有重要意义。本研究于2019年5月20日至9月15日,利用涡度相关技术和微型蒸渗仪对毛乌素沙地油蒿-杨柴灌丛生态系统ET、蒸发(E)和蒸腾(T)进行测定和估算,量化了油蒿-杨柴灌丛生态系统ET组分,并分析ET及其组分的季节特征及影响因素。结果表明: T为毛乌素沙地油蒿-杨柴灌丛生态系统生长季ET的主要组分,T/ET为53.1%。T/ET值随降水减少而升高,E/ET值随降水减少而减少,蒸散组分分配主要受降水调控。在季节尺度上,E与10 cm深处土壤含水量(SWC10)和太阳净辐射(Rn)呈显著正相关,其中,SWC10E的主要影响因素;TRn和叶面积指数(LAI)的升高而升高,随30 cm处土壤含水量(SWC30)的升高呈先升高后降低的单峰趋势,受到SWC30Rn和LAI的共同影响;水分是ET的主要影响因素。生长季蒸散/降水量(ET/P)为109.2%,5月ET/P为250.5%,表明生长季初期ET耗水部分来自非生长季降水。  相似文献   

6.
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MATMAP)和土壤(SOCTN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MATSOCQ10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10MAP的增加而减小, 而其他类型森林中Q10MAP无显著相关性; 在EBF、DBF、ENF中Q10TN的增加而增大, 但Q10TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。  相似文献   

7.
《植物生态学报》1958,44(6):687
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MATMAP)和土壤(SOCTN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MATSOCQ10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10MAP的增加而减小, 而其他类型森林中Q10MAP无显著相关性; 在EBF、DBF、ENF中Q10TN的增加而增大, 但Q10TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。  相似文献   

8.
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βreplβrich分别表现出单峰格局和“U”形格局, 而草本植物βreplβrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。  相似文献   

9.
为了揭示三江源区垂穗披碱草(Elymus nutans)人工草地生态系统(100°26′-100°41′ E, 34°17′-34°25′ N, 海拔3 980 m)的净生态系统CO2交换(NEE), 该研究利用2006年涡度相关系统观测的数据分析了该人工草地的NEE, 总初级生产力(GPP)、生态系统呼吸(Reco)以及Reco/GPP的变化特征及其影响因子。CO2日最大吸收值为6.56 g CO2·m-2·d-1, 最大排放值为4.87 g CO2·m-2·d-1GPP年总量为1 761 g CO2·m-2, 其中约90%以上被生态系统呼吸所消耗, CO2的年吸收量为111 g CO2·m-2。5月的Reco/GPP略高于生长季的其他月份, 为90%; 6月Reco/GPP比值最低, 为79%。生态系统的呼吸商(Q10)为4.81, 显著高于其他生态系统。该研究表明: 生长季的NEE主要受光量子通量密度(PPFD)、温度和饱和水汽压差(VPD)的影响, 生态系统呼吸则主要受土壤温度的控制。  相似文献   

10.
为了探明西北半干旱区典型沙生植物油蒿(Artemisia ordosica)叶水平资源利用效率的相对变化及对环境因子的响应机制, 该研究于2018年5-10月, 使用LI-6400XT便携式光合仪测定了毛乌素沙地油蒿叶片的净光合速率(Pn)、蒸腾速率(E)、叶表面光合有效辐射(PARl)、叶表面温度(Tl)、叶表面相对湿度(RHl), 在实验室计算叶片单位面积氮含量(Narea), 分析了叶片氮利用效率(NUE)、水分利用效率(WUE)、光利用效率(LUE)与环境因子之间的关系及NUEWUELUE之间的相对变化。研究结果表明, 在充足且稳定光强下油蒿的Pn主要受温度的影响, NUEWUEVPDlTl之间具有显著负相关关系, NUEWUELUE间为正相关关系, NUEWUELUE最大值分别发生在5、7和9月, 分别为9.43 μmol CO2·g-1·s-1、3.86 mmol·mol-1、0.04 mol·mol-1, 资源利用效率的变化主要受Pn的影响。温度通过影响植物N分配来改变Pn, 进而影响着资源利用效率, WUELUE显著正相关, 对构建荒漠区生态系统能量交换过程模型有重要意义。  相似文献   

11.
《植物生态学报》2014,38(8):795
亚洲中部干旱区地处欧亚大陆腹地, 干旱少雨, 生态环境十分脆弱, 研究该地区大气与地表之间的能量和物质交换对干旱区水资源利用和生态环境保护具有重要意义。该文分析了亚洲中部干旱区荒漠与草地生态系统能量、水汽和CO2通量的日变化及季节变化特征, 探究了水汽和CO2通量对主要环境因子的响应。通过分析亚洲中部干旱区3个站点的涡度相关资料发现: 亚洲中部干旱区荒漠和草地生态系统在生长季(4-10月)能量、水汽通量、净CO2通量和总初级生产力的日变化呈“单峰型”, 而荒漠生态系统呼吸日变化相对稳定; 草地生态系统白天的潜热通量占净辐射通量的比例明显高于荒漠生态系统; 草地生态系统在5-8月呈现较强的碳汇, 而荒漠生态系统表现为弱碳汇。亚洲中部干旱区草地和荒漠生态系统水汽通量和总初级生产力对降水、净辐射通量或光合有效辐射、饱和水汽压差、气温均表现出明显的敏感性。  相似文献   

12.
《植物生态学报》2017,41(4):450
Aims Stoichiometric homeostasis is an important mechanism in maintaining ecosystem structure, function, and stability. The invasion of exotic species, Spartina alterniflora, has largely threatened the structure and function of native ecosystems in the Minjiang River estuarine wetland. However, how S. alterniflora invasion affect plant stoichiometric homeostasis is largely unknown. This could enhance our understanding on wetland ecosystem stability and expand the applications of ecological stoichiometry theory.
Methods Nitrogen (N) and phosphorus (P) contents of plant organs and soils in the S. alterniflora, Cyperus malaccensis var. brevifolius, and S. alterniflora-C. malaccensis var. brevifolius mixture were measured, and the homeostatic index (H) was calculated according to the stoichiometric homeostasis theory.
Important findings Our results showed that the invasion of S. alterniflora significantly increased soil N:P ratio (p < 0.05), but did not affect soil N or P contents. The N and P contents of leaf and stem were the highest for S. alterniflora, and those of the stem were the highest for C. malaccensis var. brevifolius. At the ecosystem level, the average of homeostatic index (H) of N (HN, 25.31) was larger than those of P (HP, 10.33) and N:P (HN:P, 2.50). At the organ level, root HN was significantly larger than stem HN (p < 0.05) and sheath HN:P was greater than root HN:P (p < 0.05), while there was no significant difference for HP among root, stem, leaf, and sheath (p > 0.05). As for species, root HN of S. alterniflora was significantly larger than that of C. malaccensis var. brevifolius in the mixture community (p < 0.05). In the monoculture, stem HN:P of S. alterniflora was significantly higher than that of C. malaccensis var. brevifolius (p < 0.05). Furthermore, root HN, leaf HN and sheath HN of S. alterniflora in the mixed community was significantly larger than that of S. alterniflora in the monoculture (p < 0.05), suggesting that S. alterniflora invasions increased their stoichiometric homeostasis. Meanwhile, the stoichiometric homeostasis of invasive and native plants were influenced by multiple factors, such as nutrients, organs, vegetation, and invasion. However, larger homeostasis was found in S. alterniflora than in C. malaccensis var. brevifolius in some particular organs either in mixture or monoculture communities. Therefore, the successful invasion of S. alterniflora may result from higher homeostatic index than the native species, C. malaccensis var. brevifolius.  相似文献   

13.
《植物生态学报》2016,40(12):1298
AimsThe objective of this study was to investigate the change pattern of leaves photosynthesis and stem sap flow of Tamarix chinensisin under different groundwater salinity, which can be served as a theoretical basis and technical reference for cultivation and management of T. chinensis in shallow groundwater table around Yellow River Delta.MethodsThree-year-old T. chinensis, one of the dominated species in Yellow River Delta, was selected. Plants were treated by four different salinity concentrations of groundwater—fresh water (0 g∙L-1), brackish water (3.0 g∙L-1), saline water (8.0 g∙L-1), and salt water (20.0 g∙L-1) under 1.2 m groundwater level. Light response of photosynthesis and the diurnal courses of leaf transpiration rate, stem sap flux velocity and environment factors under different groundwater salinity were determined via LI-6400XT portable photosynthesis system and a Dynamax packaged stem sap flow gauge based on stem-heat balance method, respectively.Important findings The result showed that groundwater salinity had a significant impact on photosynthesis efficiency and water consumption capacity of T. chinensis by influencing the soil salt. The net photosynthetic rate (Pn), maximum Pn, transpiration rate, stomatal conductance, apparent quantum yield and dark respiration rate increased first and then decreased with increasing groundwater salinity, while the water use efficiency (WUE) continuously decreased. The mean Pn under fresh water, brackish water and salt water decreased by 44.1%, 15.1% and 62.6%, respectively, compared with that under saline water (25.90 µmol∙m-2∙s-1). The mean WUE under brackish water, saline water and salt water decreased by 25.0%, 29.2% and 41.7%, respectively, compared with that under fresh water (2.40 µmol∙mmol-1). With the increase of groundwater salinity from brackish water to salt water, light saturation point of T. chinensisdecreased while the light compensation point increased, which lead to the decrease of light ecological amplitude and light use efficiency. Fresh water and brackish water treatment helped T. chinensis to use low or high level light, which could significantly improve the utilization rate of light energy. The decrease in Pn of T. chinensis was mainly due to non-stomatal limitation under treatment from saline water to fresh water, while the decrease in Pn of T. chinensis was due to stomatal limitation from saline water to salt water. With increasing groundwater salinity, stem sap flux velocity of T. chinensis increased firstly and then decreased, reached the maximum value under saline water. The mean stem sap flux velocity under fresh water, brackish water and salt water decreased by 61.8%, 13.1% and 41.9%, respectively, compared with that under saline water (16.96 g·h-1). Tamarix chinensis had higher photosynthetic productivity under saline water treatment, and could attained high WUE under severe water deprivation by transpiration, which was suitable for the growth of T. chinensis.  相似文献   

14.
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂, 有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地, 通过群落调查, 结合植物功能性状和土壤理化性质观测, 研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明: 1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著, 其中, 中度灌丛化草地的物种多样性和功能多样性较高, 表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地, 其原因主要是随着灌丛化程度加剧, 群落内一/二年生草本植物显著增加, 而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响, 而是通过影响功能群组成、土壤理化性质和功能多样性, 间接地影响生态系统功能; 灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。  相似文献   

15.
《植物生态学报》2015,39(9):924
Leaf net photosynthesis is crucial for detecting the mechanism of photosynthesis, whereas community net photosynthesis is useful for understanding the photosynthetic capacity of communities and its relationship with environmental factors. In particular, we need to scale up eco-physiological models from leaf scale to canopy level to study carbon cycling at regional or global scale. We hypothesized that accumulated leaf net photosynthetic rate (Pc) at community scale, i.e., calculated based on leaf net photosynthetic rate (Pn) and leaf area index (LAI), equals to measured net community CO2 exchange (NCE). The purpose of this study is to verify this hypothesis. Our field study was carried out in Duolun, Nei Mongol, China, where we constructed single-species communities by sowing Medicago sativa ‘Aohan’ seeds in three plots (3 m × 5 m) on May 30, 2012. On August 16, 2014, Pn of five healthy leaves of M. sativa ‘Aohan’ in each plot were measured with a LI-6400 portable photosynthesis system at 10:00, and net ecosystem CO2 exchange (NEE) in each plot was measured simultaneously with a LI-8100 system connected with a assimilation chamber (0.5 m × 0.5 m × 0.5 m). Pc was calculated based on Pn, number of leaves (n), LAI percentage of healthy leaves (r) and percentage of received effective light by leaves (m). NCE was derived from NEE and ecosystem respiration rate (Reco). Pc was 3.52 μmol CO2·m-2·s-1, and very close to NCE (3.56 μmol CO2·m-2·s-1), suggesting that leaf-scale photosynthesis may accurately predict community-scale photosynthesis. However, our method could not separate community respiration from soil respiration, and future studies, should be designed to counteract this effect. Scaling up from leaf photosynthesis to community photosynthesis should also consider vertical structure of communities and nonlinear responses of leaf photosynthesis to changes in light quantum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号