首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
  国内免费   9篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
在青藏高原进行了大范围的群落调查 ,研究高原的两种主要草地群落类型———高寒草甸和高寒草原的植物物种丰富度及其变化。结果表明 :(1)在 5 0个样地 2 5 0个 1m× 1m的样方中 ,共出现 2 6 7种植物 ,其中高寒草甸179种 ,高寒草原 135种。在高寒草甸 ,1m2 样方内物种数最多为 32种 ,最少的仅为 3种 ;在高寒草原 ,物种数最多为 18种 /m2 ,最少的仅为 2种 /m2 。 (2 )物种丰富度随经度和纬度的增加呈增加趋势 ;随海拔的上升呈减少趋势。对物种丰富度与环境因子之间进行逐步回归 ,发现物种丰富度与生长季降水和温暖指数呈显著正相关。 (3)物种丰富度与地上生物量呈显著正相关。  相似文献   
2.
青藏高原是地球上接收太阳辐射能最多的地区之一,具有世界上最高的高寒草甸生态系统,对区域乃至全球碳循环起着重要作用.为了探究太阳辐射变化对高寒草甸生态系统碳动态的影响,本研究利用涡度相关技术和微气象观测系统对高寒草甸生态系统CO2净交换(NEE)、太阳总辐射、散射辐射及其相关环境要素进行观测;根据晴空指数(CI,到达地面的太阳辐射与大气上界太阳辐射的比值)将天空状况划分为晴天(CI≥0.7)、多云(0.32·m-2·s-1)对应的光量子通量密度(PPFD)约为1400 μmol·m-2·s-1,出现在CI为0.6~0.7范围内的多云天空,高于CI≥0.7的最高值(-0.57 mg CO2·m-2·s-1)(NEE负值为碳吸收,正值为排放,为方便起见在此均用绝对值描述);CI<0.6条件下,NEE随散射辐射的增加呈显著的对数增加;CI在0.6~0.7范围内,NEE达到最大值,CI≥0.7时,NEE随CI的上升呈降低趋势,说明生态系统的光合作用可能出现了光抑制现象,且散射辐射的增加有利于提高生态系统固碳能力;生态系统呼吸(Re)随温度升高呈明显的指数上升趋势,高寒草甸NEE最高值对应的温度为15 ℃,当温度高于15 ℃时,NEE随温度的升高呈下降趋势.晴天状况下,温度升高增加了Re,进而降低了NEE.当饱和水汽压差(VPD)<0.6 kPa时,NEE随VPD增加呈增加趋势;当VPD>0.6 kPa时,NEE随VPD的升高呈缓慢下降趋势,说明相对较高的VPD抑制了生态系统的光合作用.晴天的强辐射并不能促进青藏高原高寒草甸的碳吸收能力,而晴空指数在0.6~0.7范围的多云天气最有利于生态系统碳固定.  相似文献   
3.
利用生态学常规方法、石蜡切片和显微观察技术,对青藏高原东北部的冷龙岭不同海拔(3600~4200 m)原位生长及移栽的雪白委陵菜(Potentilla nivea)叶片外部形态和解剖结构进行观察,探究其叶片性状对海拔的响应以及生态适应性。结果表明:随海拔的升高,气温呈明显的降低趋势(约为0.66℃·100 m-1),而辐射和降水并未出现显著性差异;对于不同海拔原位生长的雪白委陵菜,总体上其叶片外部形态和解剖结构指标均存在显著差异(P<0.05),株高、叶片大小及比叶面积均随海拔升高呈减小趋势,而叶干物质含量、比叶重、叶片厚度、栅栏组织厚度、海绵组织厚度、栅栏系数和叶片紧密度则随海拔升高而增加。然而,从3800、4000和4200 m移栽到3600 m的雪白委陵菜,其叶宽、比叶面积、比叶重、叶干物质含量、角质层厚度、表皮厚度、海绵组织厚度和叶片紧密度均无显著差异。研究发现,无论是不同海拔原位生长还是移栽的雪白委陵菜,其叶片外部形态和内部解剖结构均表现出对海拔变化的敏感性,植物通过来改变自身性状以适应环境,且叶片性状之间存在协同变化。  相似文献   
4.
为了揭示三江源区垂穗披碱草(Elymus nutans)人工草地生态系统(100°26′-100°41′ E, 34°17′-34°25′ N, 海拔3 980 m)的净生态系统CO2交换(NEE), 该研究利用2006年涡度相关系统观测的数据分析了该人工草地的NEE, 总初级生产力(GPP)、生态系统呼吸(Reco)以及Reco/GPP的变化特征及其影响因子。CO2日最大吸收值为6.56 g CO2·m-2·d-1, 最大排放值为4.87 g CO2·m-2·d-1GPP年总量为1 761 g CO2·m-2, 其中约90%以上被生态系统呼吸所消耗, CO2的年吸收量为111 g CO2·m-2。5月的Reco/GPP略高于生长季的其他月份, 为90%; 6月Reco/GPP比值最低, 为79%。生态系统的呼吸商(Q10)为4.81, 显著高于其他生态系统。该研究表明: 生长季的NEE主要受光量子通量密度(PPFD)、温度和饱和水汽压差(VPD)的影响, 生态系统呼吸则主要受土壤温度的控制。  相似文献   
5.
青藏高原高寒草甸的热量输送和碳收支对气候变化的响应十分敏感,降水过程对其影响较为复杂。利用三维超声风速仪和红外CO2/H2O分析仪,以及常规微气象要素的涡度相关观测系统,分析了2002年8月8—17日的一次降水过程对青藏高原高寒草甸CO2通量和热量输送的影响。结果表明:降水过程使气温、地温和辐射等有所降低,大气湿度和CO2通量有所升高;气温、地温、总辐射、地表反射辐射、光合有效辐射(PAR)、净辐射、土壤热通量、潜热通量和显热通量分别下降了23.3%、23.1%、61.9%、58.9%、61.7%、57.9%、268.3%、61.6%和71.0%,大气湿度和CO2通量分别升高了27.0%和38.6%;降水削弱了PAR对白天净生态系统CO2交换量(NEE)的影响,而增加了地温对夜间呼吸的控制;降水强度对白天NEE几乎没有影响,但能降低夜间呼吸。  相似文献   
6.
郑梦娜  贾傲  陈之光  廣田充  唐艳鸿  杜明远  古松 《生态学报》2022,42(24):10305-10316
植物叶片对环境变化十分敏感,能反映植物适应环境所形成的生存策略。为揭示高寒植物叶片性状对海拔高度变化的响应,对位于青藏高原东北部的冷龙岭3400—4200 m之间5个不同海拔高度的矮火绒草(Leontopodium nanum)叶片进行取样,采用常规石蜡制片技术和显微观察方法测定叶片外部形态、表皮气孔特征和解剖结构,探讨其叶片性状随海拔的变化,结果表明:(1)随海拔高度升高,叶面积呈减小的趋势,而比叶重和叶干物质含量增加;(2)叶片下表皮气孔密度随海拔升高呈先增加后下降的趋势,且气孔密度、气孔器面积、长度、宽度和潜在气孔导度指数等气孔特征之间存在显著相关性;(3)叶厚、栅栏组织和海绵组织厚度随海拔升高呈显著增厚的趋势;(4)叶片解剖结构可塑性和相关性分析显示,上、下角质层厚度的可塑性指数最大,而部分解剖结构指标间存在极显著的相关性。研究表明,矮火绒草为适应沿海拔上升温度降低的环境,主要采取叶片变小、变厚的对策,使植物趋于保温、保水和抗机械损伤的方向发展,并将资源最大化地投入到自身生长发育中。  相似文献   
7.
长期以来,气候与植物物候关系的研究大多基于线性模型,但植被物候对气候变化的响应可能是非线性的。该文利用非线性模型——生存分析模型来分析时间序列中过去事件(气候因子)对目的变量(物候)的作用:用生存分析模型分析了春季气温和降水量对内蒙古草地、青藏高原草甸和欧洲地区木本植物返青期的影响。其中,内蒙古与青藏高原的物候信息来自遥感数据,欧洲地区物候信息为实测数据。蒙特卡洛方法用于拟合模型参数。结果表明:生存分析模型适合对上述不同研究对象的物候影响因素进行分析,并能模拟非线性效应;在内蒙古草地,春季气温和降水对春季返青有很大的影响,而青藏高原草甸和欧洲地区木本植物返青期对春季降水响应较小,对春季气温变化的响应随Holdridge干燥度指数上升而下降;在预测返青期时发现:春季平均气温提高1℃会导致上述地区返青期提前1–6天;而春季气温与降水的增加会导致返青期发生明显的非线性变化,这种非线性效应无法基于线性模型模拟出来。结果说明生存分析模型既能用于分析不同尺度下植物物候与气候的关系,也能用于模型预测,尤其适合探讨大幅度气候变化对物候的非线性影响。  相似文献   
8.
利用涡度相关技术观测了青藏高原两个典型的生态系统即矮嵩草(K obresia hum ilis)草甸和金露梅(P oten-tilla f ruticosa)灌丛草甸的CO2通量,并就2003年8月份的数据,分析了生态系统通量变化与环境因子的关系.8月份是这两个生态系统的叶面积指数达到最高也是相对稳定的时期,在此期间矮嵩草草甸和金露梅灌丛草甸净碳吸收量分别达56.2和32.6 g C.m-2,日CO2吸收量最大值分别为12.7μm o l.m-2.-s 1和9.3μm o l.m-2.-s 1,排放量最大值分别为5.1μm o l.m-2.-s 1和5.7μm o l.m-2.-s 1.在相同光合有效光量子通量密度(PPFD)条件下,矮嵩草草甸CO2吸收速度大于金露梅灌丛草甸;在PPFD高于1 200μm o l.m-2.s-1的条件下,随气温增加,两生态系统的CO2吸收速度都下降,但矮嵩草草甸的下降速度(-0.086)比金露梅灌丛草甸(-0.016)快.土壤水分影响土壤呼吸,并且影响差异因植被类型不同而不同.生态系统日CO2吸收量随昼夜温差增加而增大;较大的昼夜温差导致较高的净CO2交换量;植物反射率与CO2通量之间存在负相关关系.  相似文献   
9.
碳循环研究: 东亚生态系统为什么重要   总被引:2,自引:0,他引:2       下载免费PDF全文
碳循环是地球上最大的生物地球化学循环, 它通过植物的光合作用, 将大气中的CO2固定为有机质, 将太阳能转化成化学能, 从而成为人类生产和生活中最基本的物质资料和能量来源. 当生物圈与大气系统处于动态平衡时, 碳循环也处于动态平衡之中, 即生物圈从大气圈中吸收的CO2, 又几乎等量地释放到大气中. 但近百年来, 人类大量使用化石燃料, 加之土地利用的改变, 使得大气中的CO2浓度显著增加, 打破了生物圈-大气圈之间原有的碳平衡, 并引发了全球温暖化、海平面上升等一系列重大环境问题[1].  相似文献   
10.
青藏高原高寒草甸生态系统碳增汇潜力   总被引:8,自引:2,他引:6  
为了揭示青藏高原高寒草甸生态系统植被变化对碳储量的影响,以原生矮嵩草草甸、退化草甸、人工草地以及农田为研究对象,对比分析了该4种不同土地格局下生态系统的有机碳现状.以原生矮嵩草草甸土壤碳储量为基准对不同类型高寒生态系统的碳增汇潜力进行了估算.结果表明:不同类型生态系统的碳储量和碳增汇潜力有很大差异,在0-40cm土层中,(1)原生草甸碳储量最高,达到17098 g C/m2,退化草甸、人工草地和农田的有机碳汇增加潜力分别为:5637、3823、1567 g C/m2.(2)对于退化草甸和人工草地,土壤有机碳含量和密度明显低于原生草甸和农田.(3)地下生物量碳储量主要集中在0-20cm,且原生草甸地下生物量的碳储量比其他3个植被类型高3.6-5倍.总体上,青藏高原草地生态系统存在巨大的碳增汇潜力.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号