首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 125 毫秒
1.
《植物生态学报》1958,44(6):687
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MATMAP)和土壤(SOCTN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MATSOCQ10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10MAP的增加而减小, 而其他类型森林中Q10MAP无显著相关性; 在EBF、DBF、ENF中Q10TN的增加而增大, 但Q10TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。  相似文献   

2.
土壤呼吸是陆地生态系统碳循环的重要组分, 由于受到生物因子与非生物因子的共同作用, 土壤碳排放量在时间和空间尺度上都具有一定的变异性。为弄清松嫩平原西部草甸草原植物群落土壤呼吸作用的时空动态变化及其影响因子, 以典型植被碱蓬(Suaeda glauca)、虎尾草(Chloris virgata)、碱茅(Puccinellia distans)、芦苇(Phragmites australis)、羊草(Leymus chinensis)群落为研究对象, 采用LI-6400土壤呼吸测定系统对该生态系统2011-2012年植物生长季内土壤呼吸作用进行了监测。结果表明: 土壤温度可以解释土壤呼吸作用变异的53%-82%, 是影响该生态系统土壤碳排放时间变异的主要因素。土壤水分并未对土壤呼吸作用时间变异产生明显的影响。不同植物群落的土壤呼吸的温度敏感性(Q10)有所差异, Q10为2.0-6.7。生长季内, 5种植物群落的土壤累积碳排放量的平均值为316.6 g C·m-2。生长季内土壤碳累积排放量与植被地上生物量、土壤有机碳含量、平均土壤温度显著正相关, 与平均土壤含水量、pH值、土壤电导率及交换性钠百分比呈负相关关系。土壤的微气候、植被的地上生物量及土壤性质的差异是土壤碳排放空间变异的主要影响因素。  相似文献   

3.
北京山区不同植被类型的土壤呼吸特征及其温度敏感性   总被引:1,自引:0,他引:1  
土壤呼吸作为陆地生态系统碳循环的重要组成部分,是生态系统碳循环研究中的热点问题.土壤呼吸温度敏感性(Q10)是估算土壤呼吸对全球变暖的反馈参数,研究不同植被类型的Q10对评估森林生态系统碳收支具有重要意义.本研究以北京山区典型植被类型侧柏、油松和栓皮栎为研究对象,通过测定生长季内3种植被类型的土壤理化性质、土壤水热因素以及土壤呼吸速率(Rs)的变化,探究不同植被类型下的土壤呼吸特征及温度敏感性.结果表明:3种主要植被类型的Rs在生长季内与土壤温度、湿度的变化趋势相似,均呈现先升高后降低的单峰变化,Rs在4月初最低(0.45 μmol·m-2·s-1),随后逐渐增大,在7月初达到峰值(3.95 μmol·m-2·s-1),然后逐渐降低,3种植被类型的RsQ10值均存在显著差异.土壤温度和湿度是土壤呼吸的重要影响因素,两者与Rs拟合的回归模型可以解析土壤呼吸速率48.1%~56.7%的变化.北京山区的Q10值在2.05~3.19,在同一植被类型下,Q10值与土壤有机碳含量呈显著负相关(R2>0.9),植被类型、海拔和土壤有机碳含量是造成不同植被类型Q10值差异的重要原因.  相似文献   

4.
叶片暗呼吸温度敏感性对研究森林生态系统碳循环及其对气候变化的响应具有重要意义,但其树种内的变异性及季节动态还不清楚.本研究于2018年在同质园内测定了移栽自4个纬度(塔河、松岭、黑河和带岭)的兴安落叶松针叶的暗呼吸温度敏感系数(Q10),旨在探索来自不同气候条件树木的Q10的种内变异性及季节动态.结果表明: 4个移栽地的Q10具有明显的季节动态,其最大值均出现在生长季中期.4个移栽地树木的Q10存在显著差异,其变动范围为(1.48±0.01)~(2.15±0.03),并且在每个生长季阶段中差异的变化格局一致,即来自低纬度高温地区的树木Q10值较大.Q10与针叶氮浓度、可溶性糖浓度、移栽地年均气温和年均降水量间均存在显著正相关关系.综上,Q10在移栽地之间的差异及其季节动态主要由针叶养分含量和树木对移栽原地气候的长期适应引起的,这些因素在森林碳循环对气候变化响应的模型和预测中应该予以考虑.  相似文献   

5.
波文比(β)是陆面过程中的重要参数, 影响着地表和大气间的能量交换, 明确β的空间变异规律和影响因素有助于对地表能量平衡和气候间反馈关系的预测。该研究收集了在中国不同生态系统类型开展的用涡度相关法(EC)测量地表能量平衡的公开发表文献, 构建了β和气象环境因子数据库, 分析了β在生态系统之间的差异、空间变异特征及影响因素。主要结果: (1)所有生态系统β平均值为0.95 ± 0.64, 变异系数67%, 偏度1.58, 峰度3.07, 整体服从对数正态分布, β平均值最高为灌木生态系统(1.26), 最低为湿地生态系统(0.49)。(2) β在生态系统类型间差异显著: 森林和湿地生态系统β无显著差异, 灌木生态系统β >草地生态系统 β >森林和湿地生态系统 β, 农田生态系统β介于草地生态系统与森林和湿地生态系统之间。(3) β随着纬度的增加而增加, 不随经度和海拔变化。纬度每增加1°,β增加0.038。(4) β随着年降水量(MAP)、年平均气温(MAT)、净辐射(Rn)、当年降水量(PPT)、当年平均气温(Ta)和叶面积指数(LAI)的增加而降低。(5)不同生态系统中β对生物和非生物因素的响应存在显著差异: 草地、森林和灌木生态系统的β对生物和非生物因素变化较为敏感, 而农田和湿地生态系统的β与所有生物和非生物因素均无显著相关关系。(6) MAPRnβ变化的直接影响因素, LAI通过影响Rn间接影响β。结果表明了植被类型与气候因素之间具有交互作用, 能量分配最主要的影响因素是降水, 叶面积对能量分配的调节作用并不显著。  相似文献   

6.
温度系数(Q10,温度每变化10 ℃,呼吸速率的相对变化)不仅可以用来描述不同森林非同化器官(根系和树干)和土壤对温度升高的敏感性,并由此断定它们在全球变暖进程中的不同表现,而且是其呼吸总量定量估计中必不可少的参数。虽然目前已经进行了大量的研究,但不同研究者结论并不一致,影响我们对问题的整体把握。因此,有必要综合以往文献进行统计分析。该文综合大量文献,评述了林木非同化器官和土壤的Q10值频率分布、不同研究方法对Q10值的可能影响并探讨了它们对温度升高的敏感性。结果表明,不同非同化器官和土壤的Q10值差异较大,但具有相对稳定的分布中心范围。其中,土壤呼吸Q10值中,频率分布最集中的区域是2.0~2.5,占23%,其中超过80%的测定结果在1.0~4.0之间,中位数为2.74。 根系呼吸的Q10值,频率分布最集中的区域2.5~3.0,占33%,而大部分(>80%)的研究结果在1.5~3.0之间,中位数为2.40。树干呼吸的Q10值中,频率分布最集中的区域是1.5~2.0,占42%,而90%以上的测定结果在1.0~3.0之间,中位数为1.91。通过对比,发现不同非同化器官Q10值不同(树干<根系<根系与土壤共同体<去除根系土壤)。其中树干和根系的Q10值显著低于去除根系土壤的Q10值(p<0.05),表明土壤微生物活动对于未来全球变暖的反应要比木质化器官更敏感。此外,常绿植物的根系和树干呼吸的Q10值与落叶树木对应值差异不显著,说明同化器官叶片的着生时间长短对非同化器官Q10的影响不大。不同的CO2分析方法(碱吸收法,红外线测定技术和气相色谱方法)对土壤呼吸Q10值测定结果的影响不显著(p>0.10),根系分离方法(断根测定和壕沟隔断测定)也对根系呼吸的Q10值影响也不显著(p>0.10)。但是,与活体测定相比,离体测定树干呼吸显著提高了其Q10值。总体来看,不同林分相同非同化器官以及不同非同化器官呼吸的Q10值相对稳定但仍具有较大的差异性,研究方法也对结果产生一定影响,在进行呼吸总量的定量估计中应该注意这一点。今后研究的重点是进一步把影响森林非同化器官呼吸的外在因素和内在因素综合考虑于Q10值相关模型中,以便准确定量估计其呼吸总量,而研究难点是深入研究Q10值具有较大变异性的原因(如温度适应性)和内在机理以便更好的表征不同器官和生态系统组分对全球变暖的敏感性。  相似文献   

7.
土壤酶是有机质降解的催化剂,其动力学特征是表征酶催化性能的重要指标,对评价土壤健康质量有重要作用。本研究选择黄土高原3种植被带下人工刺槐林土壤为对象,探讨了土壤酶动力学参数对温度变化的响应及其温度敏感性(Q10)的变化特征。结果表明: 随着培养温度的升高,土壤丙氨酸转氨酶、亮氨酸氨基肽酶和碱性磷酸酶的潜在最大反应速率(Vmax)和半饱和常数(Km)均呈线性增加,且Vmax呈现出森林带>森林草原带>草原带的地带性规律。Vmax的温度敏感性(Q10(Vmax))为1.14~1.62,Km的温度敏感性(Q10(Km))为1.05~1.47,且两者在森林草原带的值均低于其他植被带。在低、高温区,不同土壤酶的Q10在各植被带间的变化也不尽相同。冗余分析显示,Q10与环境变量尤其是土壤养分有显著的相关关系,这表明Q10可能还受到除温度以外其他环境因子的影响。  相似文献   

8.
《植物生态学报》2013,37(11):988
青藏高原具有独特的海拔、气候和生态系统类型, 弄清其土壤有机质分解及其温度敏感性对于揭示青藏高原土壤碳储量变化及其碳汇功能具有重要意义。该文利用青藏高原西北部草地的11个封育-自由放牧成对草地, 通过测定不同温度(5、10、15、20和25 ℃)培养下的土壤碳矿化速率, 探讨了土地利用方式对该地区土壤碳矿化及其温度敏感性的影响。实验结果表明: 温度对青藏高原高寒草地的土壤碳矿化具有显著影响, 温度越高土壤碳矿化量越大。从东至西, 土壤碳矿化量逐渐降低。草地土壤碳矿化量与土壤有机碳和土壤全氮含量显著正相关; 即土壤有机碳和土壤全氮含量越高, 土壤碳矿化量就越高。土地利用方式对土壤碳矿化的温度敏感性(Q10)无显著影响, Q10值变化范围为1.4-2.4; 其中, 放牧草地Q10的平均值为1.83, 封育草地Q10的平均值为1.86。此外, Q10与土壤有机碳和土壤全氮含量无显著的相关关系, 也无明显的空间格局。放牧和封育对青藏高原高寒草地土壤碳矿化的温度敏感性无显著影响, 为深入分析青藏高原土壤碳汇功能及其对未来气温升高的响应提供了重要的理论依据。  相似文献   

9.
短期施氮肥降低杉木幼林土壤的根系和微生物呼吸   总被引:1,自引:0,他引:1       下载免费PDF全文
土壤呼吸是陆地生态系统碳循环的重要过程。在人工林生态系统中, 施肥不仅能提高人工林的生产力和固碳能力, 而且还会对土壤呼吸产生影响。为阐明施氮肥对人工林土壤总呼吸、根系和微生物呼吸的影响, 在中亚热带地区的湖南会同, 以5年生杉木(Cunninghamia lanceolata)幼林为研究对象, 施氮肥1年后, 利用LI-8100对土壤呼吸进行为期12个月的野外原位定点观测。结果发现: 施氮肥使土壤总呼吸、根系呼吸和微生物呼吸分别降低了22.7%、19.6%和23.5%; 土壤呼吸的温度敏感性(Q10)为1.81-2.04, 施肥使土壤微生物呼吸的Q10值从对照的2.04降低为1.84, 但土壤总呼吸的Q10值没有发生显著变化; 施肥没有改变土壤呼吸的季节变化, 在双因素模型中, 土壤温度和含水量可以解释土壤呼吸季节变化的69.9%-79.7%。研究表明施氮肥能降低中亚热带地区杉木人工林土壤有机碳分解对温度升高的响应, 在全球变暖背景下有利于增加土壤有机碳储量。  相似文献   

10.
研究农作物生育期对根系呼吸(RA)及其温度敏感性(Q10)的影响对丰富农田生态系统的碳循环理论具有重要理论和现实意义.在黄土高原雨养农田生态系统,于2009—2014年生长季,利用土壤碳通量系统测量相邻裸地土壤微生物呼吸(RH)和不施肥小麦地的土壤呼吸(RS=RA+RH),研究生育期对冬小麦RAQ10的影响.结果表明:冬小麦净光合速率在苗期、拔节期、灌浆期和成熟期分别为5.9、14.4、12.0和4.4 μmol·m-2·s-1,根系活力依次为51.0、100.8、84.4和31.8 μg·g-1·h-1.冬小麦不同生育期的RA差异显著,分别为0.26、0.67、0.91和0.56 μmol·m-2·s-1,且RA的变异特征与冬小麦各生育期内土壤水分含量、土壤温度、净光合速率和根系活力密切相关,分别呈抛物线、指数、线性和线性关系模型.Q10在苗期、拔节期、灌浆期和成熟期分别为2.61、4.88、2.26和6.93,且Q10的变异特征与冬小麦各生育期内的净光合速率、根系活力和土壤水分含量有关,这一变化的根系呼吸贡献率在各生育期分别为29%、53%、46%和31%.除了环境因素外,冬小麦生育期也是影响RAQ10的重要因素.  相似文献   

11.
为探明中亚热带地区常绿阔叶林演替序列土壤呼吸(Rs)的变化趋势及其影响机制, 在福建省建瓯市万木林自然保护区选取演替时间分别为15年(演替初期)、47年(演替中期)和110年(演替后期)三个不同演替阶段, 进行了为期1年的野外原位观测。结果发现: 演替初期、中期和后期的Rs分别为2.38、3.32和3.91 µmol·m -2·s -1, 温度敏感性(Q10值)分别为2.64、1.97和1.79; 与演替初期相比, 演替后期的Rs显著增加64.29%, Q10值显著降低32.30%; 不同演替阶段Rs的季节变化模式相似, 温度和含水量可分别解释季节变化的69.5% (初期)、81.9% (中期)和61.3% (后期); 回归分析发现, Rs与凋落物年归还量、细根生物量和土壤全氮和土壤有机质碳含量显著正相关。表明本研究区内植被演替促进了土壤碳排放, 降低了土壤呼吸的温度敏感性; 土壤碳输入增加、养分含量的提高和细根生物量增大是中亚热带常绿阔叶林Rs随演替进程逐渐增大的主要原因。  相似文献   

12.
Aims Soil respiration from terrestrial ecosystems is an important component of terrestrial carbon budgets. Compared to forests, natural or semi-natural shrublands are mostly distributed in nutrient-poor sites, and usually considered to be relatively vulnerable to environmental changes. Increased nitrogen (N) input to ecosystems may remarkably influence soil respiration in shrublands. So far the effects of N deposition on shrubland soil respiration are poorly understood. The aim of this study is to investigate the soil respiration of Vitex negundo var. heterophylla and Spiraea salicifolia shrublands and their response to N deposition. Methods We carried out a N enrichment experiment in V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, with four N addition levels (N0, control, 0; N1, low N, 20 kg N·hm-2·a-1; N2, medium N, 50 kg N·hm-2·a-1 and N3, high N, 100 kg N·hm-2·a-1). Respiration was measured from 2012-2013 within all treatments.Important findings Under natural conditions, annual total and heterotrophic respiration were 5.91 and 4.23, 5.76 and 3.53 t C·hm-2·a-1 for the V. negundo var. heterophylla and S. salicifolia shrublands, respectively and both were not affected by short-term N addition. In both shrubland types, soil respiration rate exhibited significant exponential relationships with soil temperature. Temperature sensitivity (Q10) of total soil respiration in V. negundo var. heterophylla and S. salicifolia shrublands ranged from 1.44 to 1.58 and 1.43 to 1.98, and Q10 of heterotrophic soil respiration ranged from 1.38 to 2.11 and 1.49 to 1.88, respectively. Short-term N addition decreased only autotrophic respiration rate during the growing season, but had no significant effects on total and heterotrophic soil respiration in V. negundo var. heterophylla shrubland. In contrast, N addition enhanced the heterotrophic soil respiration rate and did not influence autotrophic and total soil respiration in S. salicifolia shrubland.  相似文献   

13.
研究轻度干扰和重度干扰对亚热带米槠人促更新林土壤总呼吸、异养呼吸的影响.结果表明:与轻度干扰米槠林相比,重度干扰林的土壤呼吸及其各组分均下降,其中,自养呼吸(RA,1.75 t C·hm-2·a-1)下降了40%.与轻度干扰林相比,重度干扰林土壤有机碳储量、细根生物量和凋落物量均显著降低.土壤温度可以分别解释轻度干扰林土壤呼吸(RS)、异养呼吸(RH)、自养呼吸(RA)的84.7%、68.3%、5.1%,可以解释重度干扰林的84.4%、54.6%、21.7%.轻度干扰林和重度干扰林RSRHRAQ10值分别为1.75、1.93、1.27和2.46、2.34、1.65.随着干扰强度的增加,森林生态系统碳储量降低,土壤呼吸下降,且土壤呼吸及其各组分对外界环境变化的响应更明显,生态系统表现出脆弱性,重度干扰下森林生态系统在短时间内难以恢复.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号