首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
Investigations were conducted to determine whether ploidal changes found in laboratory cultures of Spirogyra also occur in nature. In an earlier study filament types identifiable as three different species (Spirogyra singu-laris Nordstedt, S. communis (Hassall)Kütz., S. fragilis Jao) arose from an original clonal culture through vegetative growth and sexual reproduction. These three “species” or filament groups differed in filament width, chloroplast number, zygospore size, and chromosome number. The differences in chromosome number represented a polyploid series of diploid (S. communis), triploid (S. fragilis), and tetraploid (S. singularis) forms in which width increased with ploidal level. The three width groups constituted a “species complex.” Five years after isolation of the original strain in this species complex, filaments corresponding to two of the width groups (S. singularis and S. communis) were found at the original collection site in the Santa Catalina Mountains in southern Arizona. The two field-collected groups were indistinguishable from the laboratory species complex in morphology and chromosome number. Homothallic conjugation within the two field width groups yielded progeny similar to those from homothallic conjugation of groups in the laboratory species complex. Filament widths of progeny were generally within the width limits of respective parental groups. The four possible intergroup crosses between the two laboratory and two field width groups yielded progeny similar to the wider parent (S. singularis) or the parent of intermediate width (S. fragilis). Progeny characteristics were determined by the width groups of parents, regardless of whether parents came from the laboratory or field. The similarities in morphology, chromosome numbers, and reproductive behavior of laboratory and field width groups imply that the laboratory species complex of S. communis has a natural counterpart in the field.  相似文献   

2.
Karyotypes of 4 accessions of Elymus scabrifolius (2n = 4x = 28) were investigated by Giemsa C- and N-banding, GAA-banding (one accession), AgNO3-staining and in situ hybridization with the rDNA probe pTa71. Two additional accessions were studied in less detail. The chromosomes were large (9-14 microns). The complements included 11 pairs of metacentrics, one with conspicuous satellites on the short arms, and 3 pairs of submetacentrics. Two of 4 accessions from Eastern Argentina and Uruguay had minute or small satellites on a submetacentric pair. No such satellites were observed in the other two accessions. In two accessions from the Cordoba province, a non-homologous submetacentric pair had very long satellites. AgNO3-staining established the presence of 4 nucleoli, two larger and two small ones, in 5 accessions. The C-banding patterns comprised from one to 12 conspicuous bands per chromosome at no preferential positions. The amount of constitutive heterochromatin (19-21%) was the highest hitherto established in the Triticeae. Similarities in banding patterns and chromosome morphology identified homologous and discriminated between non-homologous chromosomes within and, except for two chromosomes, between plants. Heteromorphic chromosome pairs were identified in satellite-carrying chromosomes only. N-banding produced conspicuous bands overall at the same positions as C-banding. GAA-banding patterns were similar to N-banding patterns. The rDNA probe hybridized to chromosome segments at nucleolar constrictions only. The production of C- and N-banding patterns in both genomes of E. scabrifolius suggests the presence of two H genomes and the absence of the pivotal St genome of Elymus. On account of the uncertain identity of one genome, and the overall similar gross morphology of E. scabrifolius and other tetraploid South American species referred to Elymus, E. scabrifolius is retained in Elymus.  相似文献   

3.
Karyotype analysis of the grasshopper Eyprepocnemis plorans samples derived from Armenian and Turkey populations was performed using C-banding technique. Chromosome polymorphism was associated only with B chromosomes that were revealed in all studied populations. Six new B chromosome morphotypes were described. Four morphotypes were found only in Armenian populations. One morphotype was revealed only in Turkey populations. One B chromosome morphotype was present in Armenian and Turkey populations. B chromosomes derived from Asian populations consisted mostly from C-positive regions. In some of the B chromosomes small C-negative regions were also registered. Morphotypes of the B chromosomes derived from Armenian and Turkey populations drastically differed from the B chromosomes described in the Iberian Peninsula and North African populations. In contrast to the B chromosomes from Armenian and Turkey populations the B chromosomes from Spain populations contained C-positive and C-negative regions alternated in their arms.  相似文献   

4.
Randolph , L. F. and Jyotirmay Mitra . (Cornell U., Ithaca.) Karyotypes of Iris pumila and related species. Amer. Jour. Bot. 46(2): 93-102. Illus. 1959.—The karyotypes of 30- and 32-chromosome geographical variants of the amphidiploid I. pumila from Russia and the Balkans were compared with the karyotype of the typical 32-chromosome Austrian forms of this species and with those of the diploid I. attica and I. pseudopumila, previously reported to be the basic species from which I. pumila originated. Plants from 3 collections of a Crimean form of I. pumila with 32 chromosomes had a pair of long chromosomes with submedian centromeres morphologically similar to chromosome 1 of the typical form of I. pumila. In addition, there was another heteromorphic pair of submedian chromosomes with one of the members having a shorter short arm. The manner in which this altered chromosome could have arisen as a result of a heterobrachial inversion is described. Five different collections of I. pumila with 30 chromosomes from Russia differ in several respects from the typical 32-chromosome I. pumila. They have an unusually long pair of chromosomes with a submedian centromere and a secondary constriction in the long arm. This chromosome is the original chromosome 2 which had been altered by the addition of a segment equivalent to the most of the long arm of one of the shorter chromosomes with subterminal centromere. The manner in which this could have occurred as the result of unequal reciprocal translocation is described. Loss of the remaining diminutive portion of the short chromosome with subterminal constriction assumed to have been involved in the unequal interchange of segments producing the modified, longer chromosome 2 would account for the reduction in chromosome number from 32 to 30 in the Russian form of I. pumila. Four pairs of chromosomes with satellites have been found in the 30-chromosome plants whereas 6 pairs of satellited chromosomes are present in the 32-chromosome I. pumila. The spontaneous occurrence of chromosomal alterations of the type here described are considered to be significant factors in the process of chromosomal repatterning resulting in the appearance of new geographical races, and eventually of species of iris, with altered chromosome numbers and modified karyotypes. More specifically it is concluded that amphidiploidy accompanied by chromosomal repatterning resulting from segmental interchange, heterobrachial inversion and related types of chromosomal alterations has played an important role in the evolution of I. pumila and karyological forms of this species occupying different geographical areas.  相似文献   

5.
Heterochromatic chromosomes and satellite DNAs of Drosophila nasutoides   总被引:5,自引:5,他引:0  
Drosophila nasutoides is distinguished from other Drosophila species in that the metaphase karyotype shows a pair of very large V-shaped chromosomes. With Giemsa, a distinctive C-banding pattern is revealed along the arms of this large chromosome, indicating a largely heterochromatic nature. Furthermore, the banding patterns of the arms are symmetrical, indicating that it is an iso-chromosome. A comparison between the metaphase karyotype and polytene chromosomes suggests that the large V chromosome appears as the dot chromosome in polytene squash. One autosome has twice the arm length of typical Drosophila polytene chromosomes and arose either by centric fusion and a pericentric inversion, or by translocation connecting distal ends with a subsequent loss of one centromere. This chromosome appears to have a short arm which ectopically pairs with the proximal region of the long arm, representing a duplication of about ten bands. When the nuclear DNA is examined by neutral CsCl gradient, four satellites are observed. As much as sixty percent of the total DNA appears as satellites in the lysate of larval brains. No satellite was detectable in the lysate of salivary glands. These observations led us to suggest that the heterochromatic nature of the large V chromosome is due to the presence of all four satellites in this chromosome and that this large chromosome appears as the dot because of the under-reduplication of the satellites during polytenization.  相似文献   

6.
马尾松染色体荧光带型的研究   总被引:5,自引:0,他引:5  
对马尾松有丝分裂中期染色体荧光带纹的分析结果表明,其色霉素A的染色体的荧光带赤;1对为着丝粒区和臂间我均有带纹的中间着丝染色体。6对为臂间区有带纺的中间着丝粒染色体;2对为着丝粒区有带纹的中间着丝粒染色体;3对无带纹的中间或近中着丝粒染色体;1对为着丝粒区有带纹的近中着丝粒染色体。  相似文献   

7.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

8.
The chromosomes of somatic and germ line cells of female embryos produced by paedogenesis were studied. The haploid set in somatic cells consists of one long submetacentric chromosome, one large acrocentric, one medium metacentric and two small acrocentrics. The length vs arm index karyogram makes it possible to distinguish all but the two pairs of small acrocentric chromosomes. — Attempts were made to develope a method for banding pattern visualization. The best result was obtained using trypsin which induced banding in the chromosomes of the somatic cells and occasionally also of the germ line cells. The resulting banding patterns were frequently not identical in members of a chromosome pair. There was also a variation between metaphases within an embryo as well as from different embryos. Some tentative explanations for these results are discussed.  相似文献   

9.
白眉长臂猿(Hylobates hoolock leuconedys)的染色体研究   总被引:7,自引:3,他引:4  
本文对两只雄性白眉长臂猿的染色体的C带、G带及Ag-NORs分布进行了较详细的分析,证实染色体数2n=38,并对该种的分类地位提出了一些新看法。  相似文献   

10.
In this paper 7 species of wildflowers were collected from Beijing suburb and Jilin Province. They are all common sightly and hardy perennials in their localities (See the Appendix for detail of the materials). The micrographs of their somatic metaphases are shown in Plate 1; the karyotype formulae, ranges of chromosome length and classification of karyotypes according to Stebbins (1971) are shown in Table 1; the idiograms of 5 species in Figs. 1-5. The karyotype analysis is made on the basis of Li and Chen (1985)(1). The essential points are as follows; (1) Ten pairs of chromosomes of Achyrophorus ciliatus are all submetacentric (sm). (2) Twelve pairs of chromosomes are all metacentric (m), and the short arms of the seventh pair of chromosomes with a pair of satellites in Orychophragmus violaceus. (3) The seventh and nineth pairs of chromosomes are sm and the short arms of latter with satellites in Silene repens var. angustifolia. It is reported for the first time. (4) In Scabiosa tschiliensis. the first, fourth, fifth and eighth pairs of chromosomes are sm, the sixth is terminal (t). The second and seventh are subterminal (st), the third is m. There are satellites on the short arms of third and seventh pairs. It is reported for the first time. (5) The eleventh pair of chromosomes is sm and the others are all m. The short arms of the twelfth pairs with satellites in Lychnis fulgens. (6) The chromosome number (2n) is 42, with a pair of satellites in Papaver pseudo-radicatum. It is also reported for the first time. (7) The chromosome number is2n=56 with two pairs of satellites in Rehmannia glutinosa.  相似文献   

11.
薛妙男  黄广  麦适秋   《广西植物》1985,(2):107-110
本文以沙田柚为材料,对其染色体组型及带型进行了观察分析。组型分析:染色体数目2n=18,根据染色体的相对长度分成大小染色体两种类型,前者包括1、2、3、4和5对,后者为6、7、8和9对,根据臂比,9对染色体能够被分成中部着丝点和近中着丝点染色体两种类型。即第5、7,9对为亚中部着丝点,其余为中部着丝点,第6对染色体上有随体;Giemsa带型:除第二对染色体只显中间带外,其余都显着丝点带,并在3、4、8对染色体短臂上和2、3、1对染色体长臂上均显端带,第2、3,6对同源染色体之间的C带显示杂合性。  相似文献   

12.
The somatic karyotypes of 10 taxa belonging toAllium subgen.Molium (Liliaceae) from the Mediterranean area have been investigated using Giemsa C-band and fluorochrome (Hoechst, Quinacrine) banding techniques. A wide range of banding patterns has been revealed. InAllium moly (2n = 14),A. oreophilum (2n = 16) andA. paradoxum (2n = 16) C-banding is restricted to a region on each side of the nucleolar organisers and the satellites show reduced fluorescence with fluorochromes. The satellites are also C-banded and with reduced fluorescence inA. triquetrum (2n = 18), but two other chromosome pairs also have telomeric bands which are not distinguished by fluorochrome treatment. InA. erdelii (2n = 16) 4 pairs of metacentric chromosomes have telomeric C-bands while 2 pairs of telocentric chromosomes have centromeric C-banding. InA. subhirsutum (2n = 14),A. neapolitanum (2n = 28),A. trifoliatum subsp.hirsutum (2n = 14) andA. trifoliatum subsp.trifoliatum (2n = 21) chromosomes with long centromeres, consisting of a centromere and nucleolar organiser are positively C-banded on each side of the constriction. InA. subhirsutum banding is confined to the pair of chromosomes with this feature, whereas inA. neapolitanum one additional chromosome pair has telomeric bands and inA. trifoliatum there are varying numbers of chromosomes with centromeric and telomeric bands, depending on the subspecies.A. zebdanense (2n = 18) shows no C-bands. The banding patterns in this subgenus are compared with those recorded for otherAllium species and with the sectional divisions in the genus. Evidence from the banding patterns for allopolyploidy inA. trifoliatum subsp.trifoliatum andA. neapolitanum is discussed.  相似文献   

13.
INTRoDUCTIoNlYho1iumrePensL,whiteclover,isaneconomicallyimportantplantspeciesintemperatepastures.Asbrieflyreportedby[1],ithas16pairsofchromosomes(2n=32).Asyet,nodetailedcytologicalexaminationofthisspecies,suchasC-banding,hasbeenrep0rted.Inthelastdecade,thetechnique0fC-bandinghasbeenusedt0examinehighlyrepeatedsequencesinplantchrom0s0mesandhasprovidedausefultoolf0rtheanalysis0fcyt0geneticstructureincr0pplants[2-71.Inplants,thechr0m0s0mall0calizationofhighlyrepeatedDNAsequencesbyinsituhybr…  相似文献   

14.
佴文惠  陈玉泽 《兽类学报》1998,18(3):192-195
采用复制带、C带和硝酸银染色等分带技术研究了水貂的核型和带型。结果表明,2n=30,枝型为10(M)+16(SM)+2(A),XX(M)。C-带显示该水貂的一些染色体的结构异染色质比较丰富,从着丝粒区域延伸到两臂上,No.5染色体着丝粒结构异染色质有些弱化;X染色体的结构异染色质较常染色体的丰富。Ag-NORs有3个,分布在No.8染色体的次缢痕区域和一条No.2染色体长臂接近着丝粒的区域。  相似文献   

15.
三种姬鼠的染色体比较研究   总被引:5,自引:0,他引:5  
本文采用染色体分带技术(G-,C-带和银染色),对中华姬鼠(Apodemusdraco)、大林姬鼠(A.peninsulae)和大耳姬鼠(A.latronum)的核型进行了观察分析。结果表明:3种姬鼠的2n均为48。中华姬鼠的染色体均为端着丝点染色体。大林姬鼠的常规核型中,除1对中着丝点染色体(No.23)外,其余均为端着丝点染色体。大耳姬鼠的核型中,有13对端着丝点染色体,2对亚端着丝点染色体,1对亚中着丝点染色体和7对中着丝点染色体。中华姬鼠C-带核型中,所有染色体着丝点C-带都呈强阳性,异染色质非常丰富,Y染色体整条深染。在大林姬鼠C-带核型中,Nos.7,11,15,21,22着丝点C-带弱化甚至近阴性,其余染色体着丝点异染色质C-带都呈现程度不同的阳性。且Nos.2,4,7有强弱不同的端位异染色质带。X染色体着丝点区有大块的异染色质斑带出现,Y染色体整条深染。大耳姬鼠除Nos.3,4,10,12,13染色体着丝点C-带很弱外,其余染色体着丝点C-带均呈阳性,并有8对(Nos.16-23)染色体出现异染色质短臂。从总体上看,大林姬鼠和大耳姬鼠的着丝点异染色质明显比中华姬鼠的少。中华姬鼠的Ag-NOR  相似文献   

16.
加拿大引进的二倍体燕麦种质的核型鉴定   总被引:1,自引:0,他引:1  
采用常规压片法对砂燕麦、西班牙燕麦和短燕麦3个二倍体燕麦种进行了核型研究。结果表明:砂燕麦染色体核型公式为2n=2x=14=10m+4sm(2SAT),具近中部和中部着丝点染色体,第4对染色体组的短臂上有1对随体,核不对称系数为68.17%;西班牙燕麦染色体核型公式为2n=2x=14=10m+4sm(2SAT),具近中部和中部着丝点染色体,第7对染色体短臂上有1对随体,核不对称系数为59.31%;短燕麦染色体核型公式为2n=2x=14=6m+4sm+4st(2SAT),具近端部、近中部和中部着丝点染色体,第6对染色体组的短臂上有1对随体,核不对称系数为63.91%。虽然3个燕麦种的核型均为2A,但它们的染色体形态有明显不同,比较认为砂燕麦相对进化,短燕麦次之,西班牙燕麦较原始。本研究对燕麦种质资源的核型分析及进化地位研究具有参考价值。  相似文献   

17.
A procedure for obtaining G-bands on chromosomes of mammals is outlined. The procedure was utilized in an investigation of the idiogram and banding pattern of the mitotic chromosomes of the cotton rat, Sigmodon arizonae. The diploid number of this species is 22, and each pair of homologues is easily separated on the basis of size, centromeric position, and banding pattern. The autosomes are represented by four pairs of large submetacentric chromosomes, three pairs of medium to small submetacentric chromosomes, two pairs of large subtelocentric chromosomes and one pair of small acrocentric chromosomes. The X chromosome is acrocentric and averages from 5.42% to 5.46% of the haploid female complement. The Y chromosome is a minute acrocentric and easily separated from the smallest acrocentric autosome. The usefulnes of Sigmodon arizonae as a laboratory animal for cytogenetic studies is substantiated.  相似文献   

18.
Cytogenetic characterization of D. polymorpha was carried out using banding techniques such as C-banding, fluorochrome CMA3 and silver nitrate treatment. The diploid chromosome number of both investigated D. polymorpha forms (typical and albinotic) was the same 2n = 32 (NF = 56). The karyotype consisted of 5 pairs of metacentric, 7 pairs of submetacentric and four pairs of subtelo-acrocentric chromosomes. Ag-NORs were located in the telomeric position on the largest subtelo-acrocentric chromosome pair. C banding patterns indicate many sites of constitutive heterochromatin mainly located in the telomeric regions and interstitially in some chromosomes. CMA3-sites were observed in almost all chromosomes; apart from the Ag-NORs sites, they were located terminally on the chromosome arms and interstitially on three chromosome pairs. Sixteen chromosomes could be counted at the diakinesis stage of meiosis. No differences in banding chromosome patterns were found neither between both analyzed forms of D. polymorpha nor between males and females.  相似文献   

19.
Karyotypes of Tago's brown frog Rana tagoi from the Chausu mountains in Minamishinshu of Nagano Prefecture were examined by conventional Giemsa staining, C-banding and late replication (LR)-banding. Chromosome number was 2n = 28 in all cases. The 28 chromosomes consisted of four pairs (1-4) of large biarmed chromosomes, two pairs (5-6) of telocentric chromosomes and eight pairs (7-14) of small biarmed chromosomes. Chromosome pair 11 had a secondary constriction on the long arm. In females, the C-band on the long arm of chromosome pair 6 was detected in both homologs, but was absent from the arms of the homologs of chromosome pairs 5 and 9. In males, C-bands were found in the long arms of both homologs of chromosome pairs 5 and 6, were present only in one homolog of chromosome pair 5 for certain male specimens and found in only one homolog of chromosome pair 9. Specimens of R. tagoi (2n = 28) should thus have two pairs of telocentric chromosomes to provide the same number of chromosome arms, these originating quite likely from chromosome pair 1 in the 26-chromosome specimens by centric fission. Heteromorphic sex chromosomes of the XX-XY type in R. tagoi (2n = 28) in the Chausu mountains were identified. Karyotypes of tail-tip cells from a hybrid tadpole between female R. tagoi (2n = 26) from the Hinohara village in Tokyo and male R. tagoi (2n = 28) from the Chausu mountain population were examined by squash preparation. Chromosome number was 2n = 27 in all tadpoles. The 27 chromosomes consisted of one chromosome set of R. tagoi (2n = 28) and one of R. tagoi (2n = 26).  相似文献   

20.
A clonal culture of Spirogyra filaments of initially uniform width produced filaments of three additional significantly different widths. Group I filaments of the original clone were 30.9 ± 0.7 μm wide (mean ± SD, N = 50). Group I filaments produced Group II filaments (22.0 ± 1.1 μm) through vegetative growth and sexual reproduction. Zygospores from homothallic Group I filaments produced germlings representative of Groups I and II; zygospores from homothallic Group II filaments produced germlings representative of Group II only. Germlings of Groups III (27.7 ± 1.0 μm) and IV (44.9 ± 0.8 μm) were produced in the cross of I × II. Viable zygospores from homothallic Group III filaments were obtained. Cells of Group IV filaments were initially binucleate and did not conjugate. Of the six intergroup crosses possible, four resulted in conjugation-tube formation only; two crosses yielded zygospores (I × II and III × IV). Germlings from the successful cross of Groups III and IV produced filaments of all four groups. Chromosome counts were: Group I (24), Group II (12), Group III (18), and Group IV (24, one nucleus). Relative nuclear fluorescence values of mithramycin-stained DNA were (mean ± SD, N ≥ 30): Group I (11.1 ± 1.4), Group II (5.7 ± 0.7), Group III (8.8 ± 1.3), and Group IV (10.0 ± 0.9, one nucleus). Cytologically, Group II appears to be a diploid (2x), Group I a tetraploid (4x), and Group III a triploid (3x). Systematically, Groups I, II, and III key out to Spirogyra singularis, S. communis, and S. fragilis, respectively, using Transeau's mongraph of the family Zygnemataceae. These species are interpreted to represent a species complex of S. communis (whose name has priority) with the ancestral haploid (x = 6) missing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号