首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
植物油的荧光光谱法研究   总被引:4,自引:0,他引:4  
方惠敏 《生物学杂志》2009,26(6):83-85,91
荧光光谱技术具有灵敏度高,选择性好等优点。植物油中含有各种荧光成分,对食用油中菜籽油、玉米油、芝麻油、葵花仁油、花生油的同步荧光光谱和三维荧光光图谱进行了分析研究,结果表明:利用同步荧光光谱和三维荧光图谱的特征,可以区分植物油的品种,可用于植物油的鉴别和质量监控,该法提供了一种油定性分析的方法,同时也扩展了荧光法在食用油鉴别中的应用。  相似文献   

2.
冯俊  张伟  宋存江 《微生物学报》2013,53(11):1142-1148
为了探究细菌内源质粒的功能,包括细菌耐药性、细菌共生、细菌荚膜形成、细菌的重金属抗性等方面,需要对细菌的内源质粒进行消除。本文综述了基于物理学、化学及分子生物学的细菌内源质粒消除方法,阐明了质粒消除的原理。结合笔者自身的研究对质粒消除技术进行了展望。  相似文献   

3.
酶是细胞新陈代谢的基础,酶的检测在生物技术、疾病诊断及药物开发等领域都具有十分重要的意义。在检测酶的诸多方法中,荧光法因其灵敏度高、检测限低等优势发展迅速。以下简述了近年来荧光法在酶检测领域的研究,根据检测方法的不同分为直接荧光检测法和间接荧光检测法,其中直接检测法又根据不同的底物标记及检测机理进行分类。以下介绍了各种方法的应用,并展望了此类方法的前景和发展趋势,为酶工程及生命科学其他领域的相关研究提供信息。  相似文献   

4.
本研究快报报道了重水对细菌芽孢的萌发及其可培养性的抑制作用. 在常温条件下,用L-丙氨酸触发细菌芽孢的萌发,并用Tb-DPA荧光法、相差显微镜观测法和光密度测定法监测萌发过程,用最终萌发水平、萌发半期、萌发速度3个参数来表征萌发过程. 除此之外,我们还用菌落形成单位的个数来评估萌发后芽孢的可培养性. 结果表明,重水对整个萌发过程有抑制作用,同时降低了萌发后芽孢的可培养性,但对最终萌发水平无影响. 我们推测这是因为重水增强了一些芽孢特异性信号蛋白的稳定性.  相似文献   

5.
【目的】新疆油田六中区为典型水驱普通稠油油藏,水驱效果较差,油藏具有丰富的内源微生物,本研究通过分析内源微生物驱油对油藏微生物活动的影响,确定内源微生物驱油技术在该类油藏的应用潜力。【方法】采用高通量测序及分析化学技术,系统研究实施内源微生物驱油技术后油藏细菌群落结构组成、细菌总数和功能菌群的浓度以及采出液的流体性质,总结内源微生物驱油对油藏微生物活动的影响。【结果】现场试验注入激活剂和空气后,内源微生物被显著激活,细菌群落结构发生明显变化,细菌总数及功能菌群浓度普遍提高了2–3个数量级;各种内源微生物代谢活动显著增强,与地层流体相互作用后,原油明显被乳化,最终石油采收率提高5.2%。【结论】对于内源微生物较为丰富的水驱普通稠油油藏,内源微生物驱油技术对油藏微生物活动的影响显著,具有显著的技术优势和较大的应用潜力,微生物群落结构、功能菌群浓度及其相关代谢产物可以作为评价内源微生物驱油现场激活效果的重要指标,为其他内源微生物驱油现场试验提供技术参考。  相似文献   

6.
刺激响应型纳米载体是通过对外界刺激响应而产生相应结构或理化性质变化的纳米智能载药体系,具有避免药物过早泄露,提高病灶药物浓度的特点,目前已成为肿瘤诊断和治疗领域的研究热点,广泛用于控制药物的呈递和释放.本文从温度、磁场、超声、光、pH等外源和内源刺激角度,阐述了智能响应型纳米载体近年来在肿瘤诊疗领域的研究进展.  相似文献   

7.
群体感应(quorum sensing,QS)是一种依赖菌群密度的细菌交流系统。在探究细菌群体感应系统的调控机制中,对QS信号分子的鉴别和检测是不可或缺的环节,其对生命科学、药学等领域涉及细菌等微生物的相互作用、高效检测和作用机制解析等具有重要的参考意义。本文在总结不同类型细菌QS信号分子来源和结构的基础上,对QS信号分子的光电检测方法和技术进行了综述,重点对光电传感检测的敏感介质、传感界面、传感机制及测试效果进行探讨,同时关注了将微流控芯片分析技术应用于细菌QS信号分子原位监测的相关研究进展。  相似文献   

8.
DNase I的测活方法有紫外吸收法、同位素法和荧光法等.紫外吸收法简便,但灵敏度较低.同位素法灵敏度高,但实验条件要求高,且操作复杂.荧光法灵敏度较高,也简便,但影响因素较多.我们建立了一种以固定化DNA为底物的微量紫外吸收法,它较简便,灵敏度也较高.材料与方法材料:DNase I (Seravac Laboratories出  相似文献   

9.
用传统的方法鉴别细菌往往需要较长的时间(≥48h)和复杂的程序,不利于细菌的快速鉴定。基质辅助激光解析电离飞行时间质谱是最近采用的用于细菌检测的生物质谱技术,可以对完整的细菌进行检测。这种技术以激光作为能量来源,将待测细菌的表面成分解析为离子,产生重现性很好的质谱图。将未知细菌质谱图与细菌质谱图库进行比较,可以达到对细菌进行鉴剐的目的。此种质谱技术的应用,对微生物的快速鉴别有重要意义。  相似文献   

10.
透明质酸(Hyaluronic acid简称HA)是一种国际上公认的生物大分子保湿剂,用于眼科显微手术、关节炎治疗、高级化妆品等领域.目前,透明质酸的生产方法逐渐由动物组织提取法转向微生物发酵法.细菌发酵法生产透明质酸具有产量不受原料资源限制、成本低、产量高、有较高的相对分子量,分离纯化工艺简便,易于大规模生产等特点成为透明质酸生产的发展方向,应当进一步深入研究.综述了透明质酸的化学结构、理化性质、应用及生产方法等方面的研究现状,并预测了其以后发展趋势.  相似文献   

11.
This study focuses on the characterization of bacterial and yeast species through their autofluorescence spectra. Lactic acid bacteria (Lactobacillus sp.), and yeast (Saccharomyces sp.) were cultured under controlled conditions and studied for variations in their autofluorescence, particularly in the area representative of tryptophan residues of proteins. The emission and excitation spectra clearly reveal that bacterial and yeast species can be differentiated by their intrinsic fluorescence with UV excitation. The possibility of differentiation between different strains of Saccharomyces yeast was also studied, with clear differences observed for selected strains. The study shows that fluorescence can be successfully used to differentiate between yeast and bacteria and between different yeast species, through the identification of spectroscopic fingerprints, without the need for fluorescent staining.  相似文献   

12.
Accurate and rapid identification of pathogenic microorganisms is of critical importance in disease treatment and public health. Conventional work flows are time-consuming, and procedures are multifaceted. MS can be an alternative but is limited by low efficiency for amino acid sequencing as well as low reproducibility for spectrum fingerprinting. We systematically analyzed the feasibility of applying MS for rapid and accurate bacterial identification. Directly applying bacterial colonies without further protein extraction to MALDI-TOF MS analysis revealed rich peak contents and high reproducibility. The MS spectra derived from 57 isolates comprising six human pathogenic bacterial species were analyzed using both unsupervised hierarchical clustering and supervised model construction via the Genetic Algorithm. Hierarchical clustering analysis categorized the spectra into six groups precisely corresponding to the six bacterial species. Precise classification was also maintained in an independently prepared set of bacteria even when the numbers of m/z values were reduced to six. In parallel, classification models were constructed via Genetic Algorithm analysis. A model containing 18 m/z values accurately classified independently prepared bacteria and identified those species originally not used for model construction. Moreover bacteria fewer than 10(4) cells and different species in bacterial mixtures were identified using the classification model approach. In conclusion, the application of MALDI-TOF MS in combination with a suitable model construction provides a highly accurate method for bacterial classification and identification. The approach can identify bacteria with low abundance even in mixed flora, suggesting that a rapid and accurate bacterial identification using MS techniques even before culture can be attained in the near future.  相似文献   

13.
Concentration-dependent carbon dot (CD) fluorescence was developed and utilized alongside hyperspectral microscopy as a specific labeling and identification technique for bacteria. Staining revealed that the CD concentration within cells depended on the characteristic intracellular environment of the species. Therefore, based on the concentration dependence of the CD fluorescence, different bacterial species were specifically labeled. Hyperspectral microscopy captured subtle fluorescence variations to identify bacteria. Method validation using Bacillus subtilis and Bacillus licheniformis succeeded with an identification accuracy of 99%. As a simple, rapid method for labeling and identifying bacterial species in mixtures, this technique has excellent potential for bacterial community studies.  相似文献   

14.
Advances in the growth of hitherto unculturable soil bacteria have emphasized the requirement for rapid bacterial identification methods. Due to the slow-growing strategy of microcolony-forming soil bacteria, successful fluorescence in situ hybridization (FISH) requires an rRNA enrichment step for visualization. In this study, catalyzed reporter deposition (CARD)-FISH was employed as an alternative method to rRNA enhancement and was found to be superior to conventional FISH for the detection of microcolonies that are cultivated by using the soil substrate membrane system. CARD-FISH enabled real-time identification of oligophilic microcolony-forming soil bacteria without the requirement for enrichment on complex media and the associated shifts in community composition.  相似文献   

15.
Advances in the growth of hitherto unculturable soil bacteria have emphasized the requirement for rapid bacterial identification methods. Due to the slow-growing strategy of microcolony-forming soil bacteria, successful fluorescence in situ hybridization (FISH) requires an rRNA enrichment step for visualization. In this study, catalyzed reporter deposition (CARD)-FISH was employed as an alternative method to rRNA enhancement and was found to be superior to conventional FISH for the detection of microcolonies that are cultivated by using the soil substrate membrane system. CARD-FISH enabled real-time identification of oligophilic microcolony-forming soil bacteria without the requirement for enrichment on complex media and the associated shifts in community composition.  相似文献   

16.
Quenched autoligation (QUAL) probes are a class of self-reacting nucleic acid probes that give strong fluorescence signal in the presence of fully complementary RNAs and selectivity against single nucleotide differences in solution. Here, we describe experiments designed to test whether QUAL probes can discriminate between bacterial species by the detection of small differences in their 16S rRNA sequences. Probes were introduced into live cells using small amounts of detergent, thus eliminating the need for fixation, and fluorescence signal was monitored both by microscopy and by flow cytometry without any washing steps. The effects of probe length, modified backbone, probe concentration and growth state of the bacteria were investigated. The data demonstrate specific fluorescence discrimination between three closely related bacteria, Escherichia coli, Salmonella enterica and Pseudomonas putida, based on single nucleotide differences in their 16S rRNA. Discrimination was possible with cells in mid-log phase or in lag phase. These results suggest that QUAL probes may be useful for rapid identification of microorganisms in laboratory and clinical settings.  相似文献   

17.
Hybridization of bacteria with fluorescent probes targeting 16S rRNA and inspection of hybridized bacteria with fluorescence microscopy (microscopy-FISH, i.e. fluorescence in situ hybridization) have constituted an accessible method for the analysis of mixed bacterial samples such as feces. However, microscopy-FISH is a slow method and prone to errors. Flow cytometry (FCM) enables analysis of bacteria more rapidly, accurately and reliably than microscopy. In this study, a FCM method for the analysis of 16S rRNA-hybridized and DNA-stained fecal bacteria was developed. The results of FCM-FISH were comparable to those of microscopy-FISH, and the coefficients of variation of the FCM analyses were extraordinarily low. In previous FCM-FISH studies, the Eub 338 probe, which is supposed to hybridize all bacteria, has been used to detect all bacteria present in the sample. We found that Eub 338 did not bind to all bacteria, which could be detected by DNA-staining; while SYTOX Orange DNA-stain detected all bacterial species tested and produced high fluorescence intensities enabling clear separation of bacteria from non-bacterial material. Thus, DNA-staining is a method of choice for the detection of all bacteria in FCM-FISH. We conclude that FCM of 16S rRNA-hybridized and DNA-stained bacteria is a rapid and reliable method for the analysis of mixed bacterial samples including feces.  相似文献   

18.
We present a label-free detection of protein interaction between beta-galactosidase from Escherichia coli (Ecbeta-Gal) and monoclonal anti-Ecbeta-Gal using deep UV laser-based fluorescence lifetime microscopy. The native fluorescence from intrinsic tryptophan emission was observed after one-photon excitation at 266 nm. Applying the time-correlated single-photon counting (TCSPC) method, we investigated the mean fluorescence lifetime and lifetime distributions from tryptophan residues in Ecbeta-Gal protein, monoclonal anti-Ecbeta-Gal, and corresponding complex. The results demonstrate that deep UV laser-based fluorescence lifetime microscopy is useful for sensitive identification of biological macromolecules interaction using intrinsic fluorescence.  相似文献   

19.
For the first time, we report the fabrication of a titanium bacterial chip for MALDI-MS produced from a simple, cost effective and rapid heat treatment process. This bacterial chip can be reused many times and is highly versatile. These bacterial chips serve dual roles: (1) They can be applied as MALDI-MS target plates for direct and highly sensitive bacterial analysis. (2) They can be used as bacterial sensors for direct analysis of the captured bacteria using MALDI-MS. The sensitivity of these chips when used as bacterial sensors is <10(3)cfu/mL. The lowest detectable concentration for direct MALDI-MS analysis was found to be 10(4)cfu/mL. The results were further justified by using standard plate counting method combined with Tukey-Kramer statistical analysis and fluorescence imaging followed by image processing for fluorescence quantification using ImageJ software to substantiate the MALDI-MS results.  相似文献   

20.
为建立临床常见革兰氏阳性球菌的蛋白指纹库,为快速鉴定这些细菌奠定基础,收集了从临床中分离获得的185株革兰氏阳性球菌,包括金黄色葡萄球菌、表皮葡萄球菌、溶血性葡萄球菌、粪肠球菌和屎肠球菌。将这些菌株分成建模组和验证组,利用表面增强激光解析电离飞行时间质谱检测细菌蛋白,用ProteinChip和Biomarker Wizard软件对建模组细菌数据进行分析,筛选出每种细菌各自稳定表达的蛋白峰,并将数据导入自建的Fingerwave软件建立了临床常见革兰氏阳性球菌的蛋白指纹库。随后,将验证组细菌的蛋白峰数据与蛋白指纹库中蛋白峰数据进行相似度分析,以评价其鉴定符合率。建立了包含5种临床常见革兰氏阳性球菌的蛋白指纹库,利用其对验证组菌株进行鉴定,与应用传统微生物学鉴定及分子生物学方法获得的鉴定结果的符合率为100%。结果表明,进一步扩大并完善革兰氏阳性球菌的蛋白指纹库,将为临床病原菌的快速鉴定提供可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号