首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杜驰  张冀  张富春 《植物研究》2017,37(2):211-215
根据盐穗木盐胁迫下响应的转录组测序结果,参考盐穗木HcRev1、HcRev3基因的ESTs序列设计荧光定量PCR特异性引物,建立检测盐穗木Revs基因相对表达量的荧光定量PCR方法,分析Rev1和Rev3基因在盐穗木不同浓度盐胁迫处理不同时间的转录水平。结果表明,HcRev1、HcRev3基因具有相似的表达模式,在100 mmol·L-1 NaCl低盐胁迫下表达稳定,在300、500、700 mmol·L-1 NaCl胁迫下,随胁迫浓度增高、胁迫时间延长,表达量升高。其中HcRev1在700 mmol·L-1 NaCl胁迫14 d后达到峰值,是对照组的4.63倍。HcRev3基因在300 mmol·L-1 NaCl胁迫14 d时,表达量迅速升高,是对照组的15.55倍,表达差异极显著。研究结果说明HcRev1、HcRev3基因都受盐胁迫诱导表达,提示HcRev1、HcRev3基因虽然表达量存在差异,但在盐胁迫过程中参与了DNA损伤修复。研究有助于阐明Rev1、Rev3基因在DNA损伤修复和植物耐盐性间的调控功能作用。  相似文献   

2.
Human Rev1 is a translesion synthesis (TLS) DNA polymerase involved in bypass replication across sites of DNA damage and postreplicational gap-filling. Rev1 plays an essential structural role in TLS by providing a binding platform for other TLS polymerases that insert nucleotides across DNA lesions (polη, polι, polκ) and extend the distorted primer-terminus (pol?). We use NMR spectroscopy to demonstrate that the Rev1 C-terminal domain utilizes independent interaction interfaces to simultaneously bind a fragment of the ’inserter’ polη and Rev7 subunit of the ’extender’ pol?, thereby serving as a cassette that may accommodate several polymerases making them instantaneously available for TLS.

Structured summary of protein interactions

REV1, REV3 and REV7physically interact by nuclear magnetic resonance (View interaction), molecular sieving (View interaction) and isothermal titration calorimetry (View interaction).REV3 and REV7bind by molecular sieving (View interaction)REV1 and Polη-RIR peptidebind by nuclear magnetic resonance (View interaction)REV1, REV3, REV7 and Polη-RIR peptidephysically interact by nuclear magnetic resonance (View interaction).  相似文献   

3.
曹原  刘新泳 《生命的化学》2006,26(4):294-297
病毒颗粒蛋白表达调节因子(regulatorofvirionproteinexpression,Rev)是HIV-1转录过程中不可缺少的调控蛋白。Rev与病毒mRNA的Rev应答元件(revresponseelement,RRE)相互作用,加速mRNA向核外转运。Rev缺乏或者不能进入细胞核,未剪接和部分剪接的mRNA将在核内完全降解,导致HIV-1的复制被阻断。Rev在HIV-1复制周期中起着重要的反式调节作用,是寻找新作用机制和不易产生耐药性的抗艾滋病药物的新靶点。该文介绍Rev介导的核质转运过程和Rev蛋白的相关抑制剂。  相似文献   

4.
Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases polη, ι, and κ to their cognate DNA lesions and facilitates their subsequent exchange to polζ that extends the distorted DNA primer-template. Rev1 interaction with the other major human TLS polymerases, polη, ι, κ, and the regulatory subunit Rev7 of polζ, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157-1251) and its complex with Rev1 interacting region (RIR) from polη (residues 524-539). The domain forms a four-helix bundle with a well-structured N-terminal β-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an α-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/polη-RIR complex exhibit μs-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases.  相似文献   

5.
6.
H. Roche  R. D. Gietz    B. A. Kunz 《Genetics》1994,137(3):637-646
The yeast REV3 gene has been predicted to encode a DNA polymerase specializing in translesion synthesis. This polymerase likely participates in spontaneous mutagenesis, as rev3 mutants have an antimutator phenotype. Translesion synthesis also may be necessary for the mutator caused by a RAD1 (nucleotide excision repair) deletion (rad1Δ). To further examine the role of REV3 in spontaneous mutagenesis, we characterized SUP4-o mutations that arose spontaneously in strains having combinations of normal or mutant REV3 and RAD1 alleles. The largest fraction of the rev3Δ-dependent mutation rate decrease was observed for single base-pair substitutions and deletions, although the rates of all mutational classes detected in the RAD1 background were reduced by at least 30%. Interestingly, inactivation of REV3 was associated with a doubling of the number of sites at which the retrotransposon Ty inserted. rev3Δ also greatly diminished the magnitude of the rad1Δ mutator, but not to the rev3Δ antimutator level, implicating REV3-dependent and independent processes in the rad1Δ mutator effect. However, the specificity of the rev3Δ antimutator suggested that the same REV3-dependent processes gave rise to the majority of spontaneous mutations in the RAD1 and rad1Δ strains.  相似文献   

7.
HIV的Rev蛋白——研究病毒基因表达调节的有力工具谭伟赵翠萍综述李德富审校(中国药品生物制品检定所,北京100050)分类号R752前言Rev蛋白是人类免疫缺陷病毒(humanimmunode-ficiencyvirus,HIV)的重要调节蛋白之一...  相似文献   

8.
Translesion synthesis is a fundamental biological process that enables DNA replication across lesion sites to ensure timely duplication of genetic information at the cost of replication fidelity, and it is implicated in development of cancer drug resistance after chemotherapy. The eukaryotic Y-family polymerase Rev1 is an essential scaffolding protein in translesion synthesis. Its C-terminal domain (CTD), which interacts with translesion polymerase ζ through the Rev7 subunit and with polymerases κ, ι, and η in vertebrates through the Rev1-interacting region (RIR), is absolutely required for function. We report the first solution structures of the mouse Rev1 CTD and its complex with the Pol κ RIR, revealing an atypical four-helix bundle. Using yeast two-hybrid assays, we have identified a Rev7-binding surface centered at the α2-α3 loop and N-terminal half of α3 of the Rev1 CTD. Binding of the mouse Pol κ RIR to the Rev1 CTD induces folding of the disordered RIR peptide into a three-turn α-helix, with the helix stabilized by an N-terminal cap. RIR binding also induces folding of a disordered N-terminal loop of the Rev1 CTD into a β-hairpin that projects over the shallow α1-α2 surface and creates a deep hydrophobic cavity to interact with the essential FF residues juxtaposed on the same side of the RIR helix. Our combined structural and biochemical studies reveal two distinct surfaces of the Rev1 CTD that separately mediate the assembly of extension and insertion translesion polymerase complexes and provide a molecular framework for developing novel cancer therapeutics to inhibit translesion synthesis.  相似文献   

9.
应用抗HIV-1Rev单链抗体细胞内免疫方法,研究在人T细胞和周围血淋巴单核细胞内抗病毒复制的效果,探讨细胞内免疫抗HIV-1基因治疗的可行性。克隆抗HIV-1Rev单链抗抗体(sFv)基因,以逆转录病毒为基因载体,将名装后的含靶基因的逆转录病毒转导至人CD4阳性T-细胞株CEM和SupT1,以及HIV-1阴性自愿者的周围血淋巴单核细胞(PBMC),再分别用不同剂量(MOI)的HIV-1病毒株PN  相似文献   

10.
11.
Human immunodeficiency virus-1(HIV-1)辅助蛋白在其感染和艾滋病发病过程中起着非常重要的作用.Regulator of expression of virion proteins(Rev)作为HIV-1辅助蛋白之一,可以调节病毒结构蛋白mRNA出核转运和蛋白表达,对于病毒的复制至关重要.为研究Rev蛋白对靶细胞表犁和功能的影响,本实验采用电穿孔的方法,将HIV-1的rev基因导入THP-1细胞,通过流式分选结合G418筛选的方法建立稳定表达Rev蛋白的细胞模型;并通过RT-PCR、荧光观察及流式检测的方法,在mRNA和蛋白两个水平对所建立的细胞模犁进行鉴定.结果证实rev基凶成功导入了THP-1细胞并稳定表达,为后续rev基因产物与细胞相互作用的研究提供了平台.  相似文献   

12.
目的:为方便实验室工作中对HIV-1 B′/C亚型Rev蛋白的检测,制备相应的Rev蛋白及其抗体.方法:将我国HIV-1 B′/C亚型流行株的rev基因按大肠杆菌优势密码子进行改造后人工合成,在原核系统中与pET30a(+)载体中的His·Tag、Trx·Tag及S·Tag进行融合表达,目的蛋白经Ni2+金属螯合层析柱纯化后用于免疫家兔,制备多克隆抗体.结果与结论:合成基因在原核系统中融合表达得到相对分子质量约18×103的融合蛋白,目的蛋白的表达量约占菌体总蛋白量的36%;用纯化后的融合蛋白免疫家兔,制备了多克隆抗体,Western印迹及间接免疫荧光检测结果显示,获得的多克隆抗体与HIV-1 B′/C亚型的Rev蛋白能产生特异性反应,可用于检测HIV-1 B′/C亚型Rev蛋白的表达.  相似文献   

13.
目的:为方便实验室工作中对HIV-1 B’/C亚型Rev蛋白的检测,制备相应的Rev蛋白及其抗体。方法:将我国HIV-1 B’/C亚型流行株的rev基因按大肠杆菌优势密码子进行改造后人工合成,在原核系统中与pET30a(+)载体中的His.Tag、Trx.Tag及S.Tag进行融合表达,目的蛋白经Ni2+金属螯合层析柱纯化后用于免疫家兔,制备多克隆抗体。结果与结论:合成基因在原核系统中融合表达得到相对分子质量约18×103的融合蛋白,目的蛋白的表达量约占菌体总蛋白量的36%;用纯化后的融合蛋白免疫家兔,制备了多克隆抗体,Western印迹及间接免疫荧光检测结果显示,获得的多克隆抗体与HIV-1 B’/C亚型的Rev蛋白能产生特异性反应,可用于检测HIV-1 B’/C亚型Rev蛋白的表达。  相似文献   

14.
Rev1 and DNA polymerase ζ (Polζ) are involved in the tolerance of DNA damage by translesion synthesis (TLS). The proliferating cell nuclear antigen (PCNA), the auxiliary factor of nuclear DNA polymerases, plays an important role in regulating the access of TLS polymerases to the primer terminus. Both Rev1 and Polζ lack the conserved hydrophobic motif that is used by many proteins for the interaction with PCNA at its interdomain connector loop. We have previously reported that the interaction of yeast Polζ with PCNA occurs at an unusual site near the monomer-monomer interface of the trimeric PCNA. Using GST pull-down assays, PCNA-coupled affinity beads pull-down and gel filtration chromatography, we show that the same region is required for the physical interaction of PCNA with the polymerase-associated domain (PAD) of Rev1. The interaction is disrupted by the pol30-113 mutation that results in a double amino acid substitution at the monomer-monomer interface of PCNA. Genetic analysis of the epistatic relationship of the pol30-113 mutation with an array of DNA repair and damage tolerance mutations indicated that PCNA-113 is specifically defective in the Rev1/Polζ-dependent TLS pathway. Taken together, the data suggest that Polζ and Rev1 are unique among PCNA-interacting proteins in using the novel binding site near the intermolecular interface of PCNA. The new mode of Rev1-PCNA binding described here suggests a mechanism by which Rev1 adopts a catalytically inactive configuration at the replication fork.  相似文献   

15.
<正>近日,一项刊登在国际杂志Immunological Reviews上的研究报告中,来自美国西北大学的研究人员通过研究发现,靶向作用一种名为B7-H4的特殊分子或能帮助开发新型疗法增强机体免疫系统抵御癌症的能力,B7-H4分子能够阻断T细胞对癌细胞的杀灭能力。研究者Stephen Miller博士说道,靶向作用B7-H4分子本身,或者联合其它疗法对其进行靶向作用或许能够帮助我们开发出治疗多种类型癌症的新型疗法。免疫疗法是一类新型的癌症疗法,其能够帮助刺激患者自身的免疫系统来抵御癌细胞的攻击,一种免疫疗法包括靶向作用一系列  相似文献   

16.
The phosphorylation of HIV-1 Rev by protein kinase CK2 is strictly dependent on the regulatory subunit of the kinase and is deeply affected by conformational changes of the substrate outside the phosphorylation site [12]. Here we show that Rev modulates a variety of CK2 properties, including autophosphorylation, catalytic activity toward calmodulin, and susceptibility to polycationic effectors, whose common denominator is the involvement of the subunit. Rev's two major CK2 sites are located at its N-terminus, immediately adjacent to a helix-loop-helix motif. By comparing the behaviour of full-size Rev with that of synthetic peptides reproducing, with suitable modifications, its N-terminal 26 amino acids including the phosphoacceptor site (Ser 5, Ser 8) and amphipathic helix-1, it appears that the functional interaction of the N-terminal portion of Rev with the N-terminal domain of the subunit must rely on both electrostatic and hydrophobic interactions. The former mainly involve Rev's arginine-rich domain (residues 35–50) in helix-2, while the latter are mostly mediated by residues 12–24 of helix-1. These data disclose the possibility that, besides displaying protective, regulatory and targeting properties with respect to the catalytic subunit, the CK2 subunit also plays a role as a docking site for a subset of CK2 substrates.  相似文献   

17.
18.
目的:对目前最为常用的三质粒慢病毒包装系统进行优化,以期明确各质粒表达的病毒成分对提高慢病毒包装效率的重要性。方法:在限定总质粒量为10μg的情况下,将表达绿色荧光蛋白(GFP)的目的质粒、表达gag/pol、Rev、VSVG的包装质粒按不同比例混合,转染293T细胞进行病毒包装,48 h后收集上清用于感染293T及K562细胞,72 h后经流式细胞术检测GFP+阳性细胞比例,分析所获病毒的感染效率。结果:采用不同的质粒混合比例包装的病毒感染效率具有明显差异,其中携带GFP的目的质粒量影响作用最为显著,当目的质粒量从15%(1.5μg)增至35%(3.5μg)时,GFP+293T细胞比例从14.2%升至45.1%,增加了3.2倍。当固定目的质粒量为35%,同时分别将表达gag/pol或Rev的质粒量从15%提高到25%时,改变Rev组的GFP+阳性率提升最明显,为1.5倍;而改变VSVG质粒量在已测试的混合比例中作用不显著。包装病毒感染K562细胞的结果与293T细胞类似。结论:通过对比包装病毒的感染效率,优化了慢病毒包装的混合质粒条件,并成功地应用于感染白血病细胞系;首次发现提高Rev质粒量可以更有效地提高病毒的包装效率,为利用慢病毒表达体系研究多种基因在血液系统中的功能奠定了技术基础。  相似文献   

19.
In response to replication-blocking lesions, proliferating cell nuclear antigen (PCNA) can be sequentially ubiquitinated at the K164 residue, leading to two modes of DNA-damage tolerance, namely, translesion DNA synthesis (TLS) and error-free lesion bypass. Although the majority of reported data support a model whereby monoubiquitinated PCNA enhances its affinity for TLS polymerases and hence recruits them to the damage sites, this model has also been challenged by several observations. In this study, we expressed the PCNA-164R and ubiquitin (UB) fusion genes in an inducible manner in an attempt to mimic PCNA monoubiquitination in cultured human cells. It was found that expression of both N- and C-terminal PCNA•Ub fusions conferred significant tolerance to ultraviolet (UV)-induced DNA damage. Surprisingly, depletion of Polη, a TLS polymerase dedicated to bypassing UV-induced pyrimidine dimers, did not alter tolerance conferred by PCNA•Ub. In contrast, depletion of Rev1, another TLS polymerase serving as a scaffold for the assembly of the TLS complex, completely abolished PCNA•Ub-mediated damage tolerance. Similar genetic interactions were confirmed when UV-induced monoubiquitination of endogenous PCNA is abolished by RAD18 deletion. Hence, PCNA•Ub fusions bypass the requirement for PCNA monoubiquitination, and UV damage tolerance conferred by these fusions is dependent on Rev1 but independent of Polη.  相似文献   

20.
It has been long speculated that mammalian Rev3 plays an important, yet unknown role(s) during mammalian development, as deletion of Rev3 causes embryonic lethality in mice, whereas no other translesion DNA synthesis polymerases studied to date are required for mouse embryo development. Here, we report that both subunits of Polζ (Rev3 and Rev7) show an unexpected increase in expression during G2/M phase, but they localize independently in mitotic cells. Experimental depletion of Rev3 results in a significant increase in anaphase bridges, chromosomal breaks/gaps and common fragile site (CFS) expression, whereas Rev7 depletion primarily causes lagging chromosome defect with no sign of CFS expression. The genomic instability induced by Rev3 depletion seems to be related to replication stress, as it is further enhanced on aphidicolin treatment and results in increased metaphase-specific Fanconi anemia complementation group D type 2 (FANCD2) foci formation, as well as FANCD2-positive anaphase bridges. Indeed, a long-term depletion of Rev3 in cultured human cells results in massive genomic instability and severe cell cycle arrest. The aforementioned observations collectively support a notion that Rev3 is required for the efficient replication of CFSs during G2/M phase, and that the resulting fragile site instability in Rev3 knockout mice may trigger cell death during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号