首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass isolation of live primordial germ cells (PGCs) was demonstrated for the first time in ectothermal vertebrates. To establish a stem cell-mediated gene transfer system in fish, a stem cell line that retains the ability to develop into gametes is necessary. PGCs are well suited for use as the initial material for such a stem cell line. We established transgenic rainbow trout (Oncorhynchus mykiss) strains carrying the green fluorescent protein (GFP) gene driven by a rainbow trout vasa-like gene (RtVLG) promoter/enhancer. Because GFP expression was specific to the PGCs, PGCs were successfully visualized in all developmental stages examined. Isolated genital ridges containing GFP-labeled PGCs were enzymatically dissociated. To isolate PGCs from the complex pools of dissociated genital ridges, GFP-labeled cells were sorted by flow cytometry. The sorted GFP-positive cells were large and round with a large nucleus, typical characters of PGC morphology. The expression of RtVLG was detected only in the GFP-positive cell population, confirming that these cells were PGCs. This simple and efficient technique to purify a large number of viable PGCs opens the way for establishing a stem cell line, which can differentiate into the germline. The purified PGCs would also be a novel tool for cellular and molecular study of vertebrate germline stem cells.  相似文献   

2.
A highly pure and viable primordial germ cell (PGC) population appears to be an essential tool for establishing a cell line that can differentiate into a germ cell lineage and for studying the molecular biology and biochemistry of fish PGCs. Therefore, the aim of the present study was to establish a flow cytometric method for isolating highly pure and viable PGCs. As the material for PGC isolation, we used transgenic rainbow trout possessing the green fluorescent protein (GFP) gene driven by trout vasa-gene regulatory sequences (pvasa-GFP). Four independent transgenic strains were subjected to fluorescence microscopy and GFP-dependent flow cytometric analyses. We found that some of the pvasa-GFP transgenic strains exhibited ectopic background green fluorescence in the somatic cells aside from strong fluorescence in PGCs. Although flow cytometric analysis of genital ridge somatic cells in the four pvasa-GFP transgenic strains revealed a wide range of GFP intensities, we proved that somatic cell contamination of the GFP-positive cell population was markedly reduced if transgenic strains without the ectopic background green fluorescence were used. In addition, the forward light-scattering (FS) property, which is an indication of relative cell size, and the side light-scattering (SS) property, which is determined by cell shape and granularity, were employed to remove non-PGC contaminants from the GFP-positive cell population. By isolating GFP-positive cells with high FS/SS values, we were able to effectively remove cell blebs and the apoptotic fraction. Consequently, the purities and survival rates of isolated PGCs were greatly improved compared with those using GFP intensity as a single indicator. Thus, our flow cytometric method, in combination with the selection of suitable transgenic strains without the ectopic background green fluorescence, is capable of isolating highly pure and viable PGCs from rainbow trout. By using this method in combination with cell-cryopreservation and cell transplantation techniques, the isolated PGCs may also be used for preserving the genetic resources of endangered fish species and domesticated fish strains carrying commercially valuable traits. Mol. Reprod. Dev. 67: 91-100, 2004.  相似文献   

3.
Transplanting primordial germ cells (PGCs) has a number of potential applications in fish bioengineering. Previously, we established a system to visualize live PGCs in the rainbow trout by introducing the green fluorescent protein (Gfp) gene driven by rainbow trout vasa gene regulatory regions. However, for PGC transplantation to be practically useful in aquaculture, visualization of PGCs using a nontransgenic technique is required. In this study, we demonstrate a method for labeling PGCs from various fish species by introducing chimeric RNAs composed of the Gfp coding region and vasa gene 3'-untranslated regions (UTRs); these sequences play a critical role in stabilizing mRNA in zebrafish PGCs. The GFP chimeric RNAs, including vasa 3'-UTR RNAs from rainbow trout, Nibe croaker, and zebrafish, were microinjected into the cytoplasm of fertilized eggs of several Salmonidae species. All the resulting embryos showed specific labeling in PGCs after the somatogenesis stage, which continued to be visible for at least 50 days. To apply this technique to PGC transplantation, PGCs labeled with chimeric RNA were microinjected into the peritoneal cavity of newly hatched salmonid embryos. The GFP labeling was sufficiently long-lived for the initial stage of donor PGC behavior to be followed in the recipient embryos. Importantly, donor PGCs from brown trout and masu salmon were incorporated into xenogeneic genital ridges in recipient rainbow trout. This nontransgenic method for labeling fish PGCs should be extremely useful for applications of PGC transplantation where the resulting progeny are to be released into the environment, such as PGC cryopreservation for fish stocks and surrogate brood stock technology.  相似文献   

4.
5.
There is a need to isolate different populations of spermatogenic cells to investigate the molecular events that occur during spermatogenesis. Here we developed a new method to identify and purify testicular germ cells from rainbow trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by trout vasa regulatory regions (pvasa-GFP) at various stages of spermatogenesis. Rainbow trout piwi-like (rtili), rainbow trout scp3 (rt-scp3), and rainbow trout shippo1 (rt-shippo1) were identified as molecular markers for spermatogonia, spermatocytes, and spermatids, respectively. The testicular cells were separated into five fractions (A-E) by flow cytometry (FCM) according to their GFP intensities. Based on the molecular markers, fractions A and B were found to contain spermatogonia, while fractions C and D contained spermatocytes, and fraction E contained spermatids. We also classified the spermatogonia into type A, which contained spermatogonial stem cells (SSCs), and type B, which did not. As none of the molecular markers tested could distinguish between the two types of spermatogonia, we subjected them to a transplantation assay. The results indicated that cells with strong GFP fluorescence (fraction A) colonized the recipient gonads, while cells with weaker GFP fluorescence (fraction B) did not. As only SSCs could colonize the recipient gonads, this indicated that fraction A and fraction B contained mainly type A and type B spermatogonia, respectively. These findings confirmed that our system could identify and isolate various populations of testicular cells from rainbow trout using a combination of GFP-dependent FCM and a transplantation assay.  相似文献   

6.
7.
The purposes of this study were to quantify the secondary proliferation of primordial germ cells (PGCs) in both sexes of rainbow trout, determine if a sex difference in the timing of PGC proliferation and eventual pre‐meiotic number exists, and use microarray data collected during this period to identify genes that are associated with PGC mitosis. The experiments used vasa‐green fluorescent protein (vasa‐GFP) transgenic rainbow trout of known genetic sex that allowed for the identification and collection of PGCs in vivo. An increase was observed in the number of PGCs counted in the gonads of both female and male embryonic vasa‐GFP rainbow trout, from 300 to 700° days (water temperature in °C × days post‐fertilization). For both sexes, a statistically significant (P < 0.05) increase in the PGC number was first noted at either 350 or 400° days of development. By 700° days, a 20–50‐fold increase in germ cell number was apparent. No sex‐specific differences in the timing of PGC proliferation or number were notable in any of the families until 700° days. In conjunction, a custom microarray based on cDNA libraries from embryonic rainbow trout gonads was used to identify genes involved in PGC mitosis. Five genes were discovered: guanine nucleotide binding protein, integral membrane protein 2B, transmembrane protein 47, C‐src tyrosine‐protein kinase, and the decorin precursor protein. All the genes identified have not been previously associated with germ cell mitosis, but are known to be involved with the cell plasma membrane and/or cell signaling pathways. Mol. Reprod. Dev. 78:181–187, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
The spermatogonia of fish can be classified as being either undifferentiated type A spermatogonia or differentiated type B spermatogonia. Although type A spermatogonia, which contain spermatogonial stem cells, have been demonstrated to be a suitable material for germ cell transplantation, no molecular markers for distinguishing between type A and type B spermatogonia in fish have been developed to date. We therefore sought to develop a molecular marker for type A spermatogonia in rainbow trout. Using GFP-dependent flow cytometry (FCM), enriched fractions of type A and type B spermatogonia, testicular somatic cells, and primordial germ cells were prepared from rainbow trout possessing the green fluorescent protein (GFP) gene driven by trout vasa regulatory regions (pvasa-GFP rainbow trout). The gene-expression profiles of each cell fraction were then compared with a microarray containing cDNAs representing 16,006 genes from several salmonid species. Genes exhibiting high expression for type A spermatogonia relative to above-mentioned other types of gonadal cells were identified and subjected to RT-PCR and quatitative PCR analysis. Since only the rainbow trout notch1 homologue showed significantly high expression in the type A spermatogonia-enriched fraction, we propose that notch1 may be a useful molecular marker for type A spermatogonia. The combination of GFP-dependent FCM and microarray analysis of pvasa-GFP rainbow trout can therefore be applied to the identification of potentially useful molecular markers of germ cells in fish.  相似文献   

9.
Primordial germ cells (PGCs) generate gametes, the only cells that can transmit genetic information to the next generation. A previous report demonstrated that a fusion construct of green fluorescent protein (gfp) and zebrafish nos 1 3UTR mRNA could be used to label PGCs in a number of fish species. Here, we sought to exploit this labeling strategy to isolate teleost PGCs by flow cytometry (FCM), and to use these isolated PGCs to examine germ cell migration to the gonadal region. In zebrafish, medaka and goldfish, the PGCs were labeled by injecting the gfp-nos1 3UTR mRNA into 1- 4 cell embryos. When the embryos had developed to the somitogenesis or later stages, they were enzymatically disaggregated and GFP positive cells isolated using FCM. PGCs in the different species clustered in the same segments of the FCM scatter diagrams for total embryonic cells produced by plotting the forward scatter intensity against GFP intensity. In situ hybridization showed that the sorted zebrafish cells expressed vasa RNA in their cytoplasm, suggesting that they were PGCs. When the migration ability of the sorted cells from zebrafish was examined in an in vivo transplantation experiment, approximately 30% moved to the gonadal region of host embryos. These observations demonstrate that PGCs can be isolated without use of transgenic fishes and that the isolated PGCs retain the ability to migrate. Our data indicate that this technique will be of value for isolating PGCs from a range of fish species.  相似文献   

10.
Cadmium delays growth hormone expression during rainbow trout development   总被引:5,自引:0,他引:5  
  相似文献   

11.
We describe a technique for producing germ-line chimeric rainbow trout, Oncorhynchus mykiss, by microinjection of the isolated blastomeres. FITC-labeled donor cells and non-labeled recipient embryos at various developmental stages between the early blastula and early gastrula stages were used for cell transplantation. The chimera formation rate and the degree of donor cell distribution in recipient embryos were evaluated at both the late gastrula stage (5 days post fertilization (dpf)) and the 40-somite stage (10 dpf). Among the six combinations of developmental stages of donor and recipient embryos, the combination of midblastula (2.5 dpf) donor cells and early blastula (1.5 dpf) recipient embryos gave the highest chimera formation rate and the best distribution pattern of donor cells. Using this combination, chimeric rainbow trout were produced with donor blastomeres from dominant orange-colored mutant embryos and wild-type recipient embryos. Of the 238 chimeric embryos produced, 28 (12%) hatched normally and 14 of the 28 fry (50%) had donor-derived orange body color. To test for germ-line transmission of donor cells, gametes obtained from the matured chimeras were fertilized with gametes from wild-type fish. Of the 19 matured chimeras, 6 (32%) yielded donor-derived orange-colored progeny, in addition to wild-type siblings. The contribution rates of donor cells in the germ-line ranged from 0.3 to 14%. This technique for producing germ-line chimeras should be a powerful tool for cell-mediated gene transfer in rainbow trout. Especially, if body color mutants are used for either donor cells or the host embryos, it will be possible to easily concentrate F1 transgenic embryos derived from transplanted donor cells by body color screening. Mol. Reprod. Dev. 59: 380-389, 2001.  相似文献   

12.
Generation of viable fish from cryopreserved primordial germ cells   总被引:3,自引:0,他引:3  
An increasing number of wild fish species are in danger of extinction, often as a result of human activities. The cryopreservation of gametes and embryos has great potential for maintaining and restoring threatened species. The conservation of both paternal and maternal genetic information is essential. However, although this technique has been successfully applied to the spermatozoa of many fish species, reliable methods are lacking for the long-term preservation of fish eggs and embryos. Here, we describe a protocol for use with rainbow trout (Oncorhynchus mykiss) primordial germ cells (PGCs) and document the restoration of live fish from gametes derived from these cryopreserved progenitors. Genital ridges (GRs), which are embryonic tissues containing PGCs, were successfully cryopreserved in a medium containing 1.8 M ethylene glycol (EG). The thawed PGCs that were transplanted into the peritoneal cavities of allogenic trout hatchlings differentiated into mature spermatozoa and eggs in the recipient gonads. Furthermore, the fertilization of eggs derived from cryopreserved PGCs by cryopreserved spermatozoa resulted in the development of fertile F1 fish. This PGC cryopreservation technique represents a promising tool in efforts to save threatened fish species. Moreover, this approach has significant potential for maintaining domesticated fish strains carrying commercially valuable traits for aquaculture purposes.  相似文献   

13.
We examined the developmental rate of hybrids between rainbow trout (Salmo gairdneri) and two subspecies of cutthroat trout: westslope cutthroat trout (Salmo clarki lewisi) and Yellowstone cutthroat trout (Salmo clarki bouvieri). These taxa show considerable genetic divergence at 42 structural loci encoding enzymes; the mean Nei's d between the rainbow trout and the two species of cutthroat trout is 0.22. We used four measures of developmental rate: time of hatching and yolk resorption, rate of increase in activity of four enzymes, and time of initial detection of seven isozyme loci. The two cutthroat trout subspecies reached hatching and yolk resorption earlier than rainbow trout. Cutthroat trout had higher relative enzyme activities than rainbow trout from deposition of eye pigment to hatching. There was no difference in the rate of increase in enzyme activity or time of initial expression of these loci between these species. Hybrids showed developmental rates intermediate or similar to that of the parental species using all measures. Our results indicate an absence of regulatory and developmental incompatibility between these taxa.This research was supported by NSF Grants ISP-8011449 and BSR-8300039. M.M.F. was supported by a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

14.
Our understanding of the molecular mechanisms of primordial germ cell (PGC) proliferation in fish is rudimentary, but it is thought to be controlled by the surrounding somatic cells. We assumed that growth factors that are specifically involved in PGC proliferation are expressed predominantly in the surrounding genital ridge somatic cells. In order to isolate these growth factors, we compiled a complementary DNA (cDNA) subtractive library using cDNA from the genital ridges of 40-dpf rainbow trout embryos as the tester and cDNA from embryos without genital ridges as the driver. This approach identified a novel cytokine, designated gonadal soma-derived growth factor (GSDF), which is a member of the transforming growth factor (TGF)-beta superfamily. GSDF was expressed in the genital ridge somatic cells surrounding the PGCs during embryogenesis, and in both the granulosa and Sertoli cells at later stages. Inhibition of GSDF translation by antisense oligonucleotides suppressed PGC proliferation. Moreover, isolated testicular cells that were cultured with recombinant GSDF demonstrated dose-dependent proliferation of type-A spermatogonia; this effect was completely blocked by antiserum against GSDF. These results denote that GSDF, a novel member of the TGF-beta superfamily, plays an important role for proliferation of PGC and spermatogonia.  相似文献   

15.
利用密度梯度离心等方法从孵化51-56 h的石歧杂鸡胚血液中提取PGCs,用自制的玻璃注射针将PGCs注射到孵化2.5 d的H系受体鸡胚中制备种系嵌和体鸡;通过筛选AFLP引物建立起家禽嵌和体的AFLP检测方法;经检测20个发育的PGCs受体鸡胚中有8个种系嵌和体,嵌和率为40%。  相似文献   

16.
17.
A growing number of fish species are endangered due to human activities. A short- or long-time preservation of gametes could conserve genetic resources of threatened fish species. The aim of this study was to evaluate a hypothermic condition for short-term preservation of spermatogonia and oogonia cells isolated from immature transgenic rainbow trout, Oncorhynchus mykiss, and to determine the maximum time point for further transplantation. Viability rate of germ cells was investigated after isolation and during storage at 4 °C up to 24 h. Dulbecco's modification of Eagle's medium supplemented with Hepes fetal bovine serum and l-glutamine was used as hypothermic storage media. The results showed that while viability decreased following 24 h storage, the remaining viable cells did not vary morphologically as well as GFP intensity retained similar to those observed in freshly isolated cells. The hypothermal storage study indicated that culture medium is suitable for preserving germ cells in the short periods of time. Simplicity, easily available culture media and low cost provide new insight into hypothermic conditions for preserving and transporting of germ cells for next applied and basic studies.  相似文献   

18.
Primordial germ cells (PGCs) from stage 27 (5.5-day-old) Korean native ogol chicken embryonic germinal ridges were cultured in vitro for 5 days. As in in vivo culture, these cultured PGCs were expected to have already passed beyond the migration stage. Approximately 200 of these PGCs were transferred into 2.5-day-old white leghorn embryonic blood stream, and then the recipient embryos were incubated until hatching. The rate of hatching was 58.8% in the manipulated eggs. Six out of 60 recipients were identified as germline chimeric chickens by their feather colour. The frequency of germline transmission of donor PGCs was 1.3–3.1% regardless of sex. The stage 27 PGCs will be very useful for collecting large numbers of PGCs, handling of exogenous DNA transfection during culture, and for the production of desired transgenic chickens.  相似文献   

19.
This study reports the ultrastructure of subpopulations of epithelial cells of the thymic parenchyma during the post-hatching development of the rainbow trout, Salmo gairdner, kept at 14 degrees C. At hatching, the thymus contained a small number of medium and large thymocytes interspersed among three different types of epithelial cells: (1) epithelial cells adjacent to the connective tissue capsule; (2) ramified dark epithelial cells with electron-dense cytoplasm; and (3) pale electron-lucent epithelial cells displaying secretory-like features. All these cells types were anchored to one another by desmosomes and had apparently differentiated from the pharyngeal epithelium. At 4 days after hatching, the thymus enlarged, and numerous gaps occurred between the cell processes of contiguous epithelial cells adjacent to the capsular connective tissue. In 21-day-old trout, thymic trabeculae developed carrying blood vessels, and a subcapsular zone became evident containing lymphoblasts and large subcapsular epithelial cells. In 30-day-old trout, an outer thymic zone developed consisting of spindle-shaped epithelial cells which formed a dense network. At this stage, scattered cystic cells, which apparently differentiated from the pale epithelial cells, were present.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号