首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The activities of horseradish peroxidase (HRP) and lactoperoxidase (LPO) entrapped in reverse micelles of Igepal CO-520 in cyclohexane were studied. When the molar ratio of water to surfactant, w0 was ≥13, the activity of HRP encapsulated in the water pool of the reverse micelle was comparable with that measured in buffer. For LPO, however, lower activity was observed after its incorporation into the same system.

The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.

The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C.  相似文献   

2.
Catalase activity and stability in the presence of simple micelles of Brij 35 and entrapped in reverse micelles of Brij 30 have been studied. The enzyme retains full activity in aqueous micellar solution of Brij 35. Catalase exhibits "superactivity" in reverse micelles composed of 0.1 M Brij 30 in dodecane, n-heptane or isooctane, and significantly lowers the activity in decaline. The incorporation of catalase into Brij 30 reverse micelles enhances its stability at 50 degrees C. However, the stability of catalase incubated at 37 degrees C in micellar and reverse micellar solutions is lower than that in homogeneous aqueous solution.  相似文献   

3.
Catalytic and spectroscopic properties of alcohol dehydrogenase from horse liver, incorporated in reversed micellar media, have been studied. Two different reversed micellar systems have been used, one containing an anionic [sodium bis(2-ethylhexyl)sulfosuccinate, AOT], the other containing a cationic (cetyltrimethylammonium bromide, CTAB) surfactant. With 1-hexanol as substrate the turnover number of the enzyme in AOT-reversed micelles is strongly dependent on the water content of the system. At low wo ([H2O]/[surfactant]) (wo less than 20) no enzymatic activity can be detected whereas at high wo (wo = 40) the turnover is only slightly lower than in aqueous solution. In CTAB-reversed micelles the dependence of the turnover number on wo is much less. The enzymatic activity is in this case significantly lower than in aqueous solution and increases only slightly with an increasing water content of the reversed micelles. Possible interactions of the protein with the surfactant interfaces in the reversed micellar media were studied via circular dichroism and fluorescence measurements. From the circular dichroism of the protein backbone it is observed that the protein secondary structure is not significantly affected upon incorporation in the reversed micelles since the far-ultraviolet spectrum is not altered. Results from time-resolved fluorescence anisotropy experiments indicate that, especially in AOT-reversed micelles, interactions between the protein and the surfactant interface are largely electrostatic in nature, as evident from the dependence on the pH of the buffer used. In CTAB-reversed micellar solutions such interactions appear to be much less pronounced than in AOT.  相似文献   

4.
-Chymotrypsin was immobilized on chitin from squills, lobsters and prawns by means of glutaraldehyde. Hydrolase and peptide synthetase activities were determined in aqueous and homogeneous aqueous-organic media, respectively.

The results show -chymotrypsin immobilized on chitin from prawn to be the most active immobilized derivative based on its synthetase activity (90% yield of Bz-Tyr-Leu-NH2 in carbonate buffer, pH 9 containing 70% 1,4- butanediol).

The relationship between the kinetic constant of hydrolysis and chitin structure was also studied. -Chymotrypsin immobilized on prawn chitin was found to be the best derivative in kinetic terms.

The stability of the three derivatives was studied at 37C.  相似文献   

5.
The enzyme activity of glutathione reductase (NAD(P)H:oxidized-glutathione oxidoreductase, EC 1.6.4.2) incorporated in CTAB/H2O/CHCl3-isooctane (1:1, v/v) reverse micelles has been investigated. Enzyme follows the Michaelis-Menten kinetics within a specified concentration range. Effects of pH, waterpool (W0), and surfactant concentration on the activity of glutathione reductase have been studied in detail. Optimum pH for the maximum enzyme activity was found to be dependent on the size of the waterpool. Further, a substrate inhibition was observed when concentration of one of the substrates was present in large excess over the other substrate. Km values for the substrate, oxidized glutathione (GSSG) and NADPH in CTAB/H2O/CHCl3-isooctane (1:1, v/v) were determined at W0 values of 14.4, 20.0, 25.5 and 29.7, at pH 8.0. These values are close to those obtained in aqueous solution, whereas the kcat values vary with W0 values of 8.8 to 32.3. Studies on the storage stability in the reverse micelle at W0 29.7 and pH 8.0 showed that glutathione reductase retained about 80% of its activity even after a month. The enzyme showed a higher stability at high waterpool. Oxidized glutathione (GSSG) provides protection to glutathione reductase against denaturation on storage in reverse micellar solution. Apparently, the enzyme is able to acquire a suitable native conformation at waterpool 29.7 and pH 8.0 and thereby exhibits an activity and stability inside the micellar cavity that are almost equivalent to that in aqueous solution.  相似文献   

6.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

7.
The reverse micellar system of sodium bis(2-ethylhexyl) phosphate (NaDEHP)/isooctane/brine was used for liquid-liquid extraction of proteins. We investigated the solubilization of cytochrome-c and alpha-chymotrypsin into the NaDEHP reverse micellar phase by varying the pH and NaCl concentration in the aqueous phase. At neutral pH and relatively low ionic strength, the proteins are extracted into the micellar phase with high yield. By contacting the micellar phase with a divalent cation (e.g., Ca(2+)) aqueous solution, the reverse micelles are destabilized and release the protein molecules back into an aqueous solution for recovery. This method separates the proteins from the surfactant with very high overall efficiencies. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

9.
Lipid peroxidation (LPO) of polyunsaturated fatty acids (PUFAs) is suspected to be involved in the generation of chronic diseases. A model reaction for LPO is the air oxidation of PUFAs initiated by Fe2+ and ascorbic acid. In the course of such model reactions glycolaldehyde (GLA) was detected as main aldehydic product. Since it is difficult to explain the generation of GLA by oxidation of PUFAs, it was suspected that GLA might be derived by oxidation of ascorbic acid. This assumption was verified by treatment of ascorbic acid with Fe2+.

Produced aldehydic compounds were trapped by addition of pentafluorobenzylhydroxylamine hydrochloride (PFBHA-HCl), trimethylsilylated and finally identified by gas chromatography/mass spectrometry (GC/MS). Oxidation of ascorbic acid with O2 in presence of iron ions produced not only glycolaldehyde (GLA), but also glyceraldehyde (GA), dihydroxyacetone (DA) and formaldehyde. Glyoxal (GO) and malondialdehyde (MDA) were detected as trace compounds.

The yield of the aldehydic compounds was increased by addition of lipid hydroperoxides (LOOH) or H2O2. The buffer influenced the reaction considerably: Iron ions react with Tris buffer by producing dihydroxyace-tone (DA). Since ascorbic acid is present in biological systems and Fe2+ ions are obviously generated by cell damaging processes, the production of GLA and other aldehydic components might add to the damaging effects of LPO.

Glucose suffers also oxidation to short-chain aldehydic compounds in aqueous solution, but this reaction requires addition of equimolar amounts of Fe2+ together with equimolar amounts of H2O2 or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-HPODE). Therefore this reaction, also influenced by the buffer system, seems to be not of biological relevance.  相似文献   

10.
FTIR study of horseradish peroxidase in reverse micelles   总被引:2,自引:0,他引:2  
Fourier transform infrared (FTIR) method was used to study the secondary structures of horseradish peroxidase (HRP) in aqueous solution and in reverse micelles for the first time. Results indicated that the structure of HRP in sodium bis(2-ethylhexy)sulfosuccinate (AOT) reverse micelles was close to that in aqueous solution. In cetyltrimethylammonium bromide (CTAB) and sodium dodecylfate (SDS) reverse micelles the position of some bands changed. Results indicated that the secondary structure had a close relationship with the surfactant species of the reverse micelles. Among the three types of reverse micelles, the system of AOT reverse micelles was probably the most beneficial reaction media to HRP.  相似文献   

11.
Zhang T  Liu H  Chen J 《Biotechnology progress》1999,15(6):1078-1082
Affinity Cibacron Blue 3GA (CB) dye in aqueous phase was directly transferred to the reversed micelles due to electrostatic interaction between anionic CB and cationic cetyltrimethylammonium bromide (CTAB). The bovine serum albumin (BSA) transfer to the reverse micelles increases significantly in a wide range of pH by the addition of a small amount of CB ( approximately 1.0-7.0% of the total surfactant concentration) to the aqueous phase. For pH < pI, the selectivity can be significantly improved with the presence of affinity CB because no BSA was extracted in the absence of CB. For backward extraction of BSA from the micellar phase with stripping aqueous solution, the addition of 2-propanol to the aqueous phase can recover almost all BSA (98.5%) extracted into the reverse micelles.  相似文献   

12.
The higher order structure of Mucor miehei lipase and micelle size in a cationic cetyltrimethylammonium bromide (CTAB) reverse micellar system was investigated. Circular dichroic (CD) measurement revealed that the lipase far-UV CD spectra changed markedly, going from buffer solution to the reverse micellar solution, and were very similar for any organic solvent used. The ellipticity of the solubilized lipase in the far-UV region markedly decreased with increasing water content (W(0): molar ratio of water to CTAB), indicating that the secondary structure of lipase changed with the water content. The linear correlation between the W(0) and the micelle size was obtained by measuring dynamic light scattering. From the linear correlation between the micelle size and W(0), the higher order structure of the solubilized lipase appears to be affected directly by the micellar interface. The species and concentration of alcohol as a cosurfactant had an inferior effect on lipase structure. Especially, at ratios of 1-pentanol to CTAB of less than 8, the secondary and tertiary structures of lipase were preserved in the reverse micelles. The CTAB concentration had little effect on the lipase structure in the micelles. The catalytic activity of the lipase solubilized in the CTAB reverse micelles increased with increasing the W(0).  相似文献   

13.
The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307deg;C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.  相似文献   

14.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30-40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

15.
Phosphatidylcholine containing large amounts of long polyunsaturated fatty acid, eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6), was synthesized in isooctane. Immobilized phospholipase A2 was used as a catalyst. A parallel non-enzymatic esterification reaction was investigated in separate experiments.

The concentrations of lyso-phosphatidylcholine, polyunsaturated fatty acids, water and the enzyme were varied over wide ranges as were the temperature and the reaction time. The type of enzyme, carrier and immobilization procedure were held constant.

The yield of phosphatidylcholine was relatively high (about 21%) when the concentration of polyunsaturated fatty acids was high (300 mg/g of reaction mixture) and the water content was low (below 30% of the dry immobilized enzyme). The highest yield of phosphatidylcholine was found at 80 hours and 75°C. However, at this temperature an extensive non-enzymatic reaction between polyunsaturated fatty acids and lyso-phosphatidylcholine occurred. At 80°C the polyunsaturated fatty acids were partly oxidized. Therefore, a temperature of 45°C to 65°C is probably the optimum temperature for the reaction.  相似文献   

16.
An affinity-based reverse micellar system formulated with nonionic surfactant was applied to the refolding of denatured-reduced lysozyme. The nonionic surfactant of sorbitan trioleate (Span 85) was modified with Cibacron Blue F-3GA (CB) as an affinity surfactant (CB-Span 85) to form affinity-based reverse micelles in n-hexane. The water content of 15 was found optimal for lysozyme refolding in the reverse micellar system of 62.7 mmol/L Span 85 with coupled CB of 0.3 and 0.5 mmol/L. In addition, the operating conditions such as pH and the concentrations of urea and redox reagents were optimized. Under the optimized conditions, complete renaturation of lysozyme at 3-3.5 mg/mL was achieved, whereas dilution refolding in the bulk aqueous phase under the same conditions gave much lower activity recovery. Moreover, the secondary structure of the refolded lysozyme was found to be the same as the native lysozyme. Over 95% of the refolded lysozyme was recovered from CB-Span 85 reverse micelles by a stripping solution of 0.5 mol/L MgCl(2). Thus, the present system is advantageous over the conventional reverse micellar system formed with ionic surfactants in the ease of protein recovery.  相似文献   

17.
In order to investigate the influence of antioxidative anti-inflammatory combination therapy (AACT) with dimethyl sulfoxide (DMSO). chlorpromaittic (CPZ) and vitamin E upon the activity of the inflammation. plasma lipid peroxide was measured as thiobarbituric acid reactive substance (TBARS) 12hrs postoperatively in the moclitied cecal ligation sepsis model in the mouse.

Significantly higher TBARS levels were found in the male control group (13.7 ± 0.7nmol MDA/ml) than in the female control group (11.6 ± 0.6nmol MDA/ml).

The operated male group had significantly higher TBARS levels (16.2 ± 0.6 nmol MDA/ml) than the unoperdted male control group (13.7 ± 0.7nmol MDA/ml). No increase of TBARS levels was observed in the operated female group.

Both male and female operated group. when postoperatively treated with AACT had the same TBARS level as the not operated male or female control group.

Survival curves of operated male and female group did not demonstrate any significant difference. The survival was better in an operated male and an operated female group. when postoperatively treated with AACT.

It was concluded that the applied TBARS test IS too insensitive to follow the activity of the inflammation and has no predictive value for the outcome of sepsis in this model.  相似文献   

18.
反相胶束体系中的酶学研究   总被引:14,自引:1,他引:13  
反胶束是新的酶学研究体系,酶在反胶束体系中的性质与在水溶液中相比有较大区别.评述了反胶束体系的性质及酶在其中的催化活性及构象变化,讨论了影响酶活性及构象变化的各种因素,并简单介绍了反胶束酶学研究及应用的最新进展.  相似文献   

19.
The extraction of lactoperoxidase (EC 1.11.1.7) from whey was studied using single step reverse micelles‐assisted extraction and compared with reverse micellar extraction. The reverse micelles‐assisted extraction resulted in extraction of contaminating proteins and recovery of lactoperoxidase in the aqueous phase leading to its purification. Reverse micellar extraction at the optimized condition after forward and backward steps resulted in activity recovery of lactoperoxidase and purification factor of the order of 86.60% and 3.25‐fold, respectively. Whereas reverse micelles‐assisted extraction resulted in higher activity recovery of lactoperoxidase (127.35%) and purification factor (3.39‐fold). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) profiles also evidenced that higher purification was obtained in reverse micelles‐assisted extraction as compared of reverse micellar extracted lactoperoxidase. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
The enzyme glucose-6-phosphate dehydrogenase (G6PD) plays an important role in maintaining the level of NADPH and in producing pentose phosphates for nucleotide biosynthesis. It is also of great value as an analytical reagent, being used in various quantitative assays. In searching for new strategies to purify this enzyme, the partitioning of G6PD in two-phase aqueous mixed (nonionic/cationic) micellar systems was investigated both experimentally and theoretically. Our results indicate that the use of a two-phase aqueous mixed micellar system composed of the nonionic surfactant C(10)E(4) (n-decyl tetra(ethylene oxide)) and the cationic surfactant C(n)TAB (alkyltrimethylammonium bromide, n = 8, 10, or 12) can improve significantly the partitioning behavior of G6PD relative to that obtained in the two-phase aqueous C(10)E(4) micellar system. This improvement can be attributed to electrostatic attractions between the positively charged mixed (nonionic/cationic) micelles and the net negatively charged enzyme G6PD, resulting in the preferential partitioning of G6PD to the top, mixed micelle-rich phase of the two-phase aqueous mixed micellar systems. The effect of varying the cationic surfactant tail length (n = 8, 10, and 12) on the denaturation and partitioning behavior of G6PD in the C(10)E(4) /C(n)TAB/buffer system was investigated. It was found that C(8)TAB is the least denaturing to G6PD, followed by C(10)TAB and C(12)TAB. However, the C(10)E(4)/C(12)TAB/buffer system generated stronger electrostatic attractions with the net negatively charged enzyme G6PD than the C(10)E(4)/C(10)TAB/buffer and the C(10)E(4)/C(8)TAB/buffer systems, when using the same amount of cationic surfactant. Overall, the two-phase aqueous mixed (C(10)E(4)/C(10)TAB) micellar system yielded the highest G6PD partition coefficient of 7.7, with a G6PD yield in the top phase of 71%, providing the optimal balance between the denaturing effect and the electrostatic attractions for the three cationic surfactants examined. A recently developed theoretical framework to predict protein partition coefficients in two-phase aqueous mixed (nonionic/ionic) micellar systems was implemented, and the theoretically predicted G6PD partition coefficients were found to be in reasonable quantitative agreement with the experimentally measured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号