首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Serine/arginine-rich proteins (SR proteins) constitute a family of RNA-binding proteins conserved throughout metazoans. The SR proteins are essential for constitutive pre-mRNA splicing and also affect regulated pre-mRNA splicing. We identified five putative genes encoding SR proteins (referred to as srp genes) in Caenorhabditis elegans, examined their expression using the gfp gene as a reporter, and suppressed their functions by double-stranded RNA-mediated interference (RNAi). The srp::gfp fusion genes were expressed in the nuclei of most somatic cells and showed no obvious tissue- or stage-specific expression. Simultaneous RNAi of the five srp genes resulted in embryonic lethality, whereas RNAi of individual srp genes caused no obvious morphological abnormality in the F1 progeny, indicating functional redundancy of the SR proteins. However, RNAi of several combinations of srp genes caused various developmental abnormalities, such as abnormal somatic gonad structures, delayed shift of the germ cell sexual differentiation, and abnormal spermatogenesis. Our results suggest that individual SR proteins have unique but somewhat redundant functions in C. elegans development.  相似文献   

2.
SRp20 is a splicing factor belonging to the highly conserved family of SR proteins [1] [2] [3] [4], which have multiple roles in the regulation of constitutive and alternative splicing in vivo. It has been suggested that SR proteins are involved in bringing together the splice sites during spliceosome assembly [5]. SR proteins show partial redundancy, as each single SR protein can restore splicing activity to a splicing-deficient cytoplasmic extract (termed S-100 extract). Nevertheless, several studies demonstrate that individual SR proteins have different effects on the selection of specific alternative splice sites, and they recognize distinct RNA sequences [6] [7] [8] [9] [10] [11] [12]. Also, inactivation of two SR proteins, B52/SRp55 in Drosophila [13] or ASF/SF2 in the chicken cell line DT40 [14], is lethal, indicating the existence of nonredundant functions. Here, using Cre-loxP-mediated recombination in mice to inactivate the SRp20 gene, we found that it is essential for mouse development. Mutant preimplantation embryos failed to form blastocysts and died at the morula stage. Immunofluorescent staining showed that SRp20 is present in oocytes and early stages of embryonic development. This is the first report of mice deficient for a member of the SR protein family. Our experiments confirm that, although similar in structure, the SR proteins are not functionally redundant.  相似文献   

3.
SR proteins are essential splicing factors involved in the use of both constitutive and alternative exons. We previously showed that the SR proteins SRp20 and ASF/SF2 have antagonistic activities on SRp20 pre-mRNA splicing. SRp20 activates exon 4 recognition in its pre-mRNA, whereas ASF/SF2 inhibits this recognition. In experiments aimed at testing the specificity of SRp20 and ASF/SF2 for exon 4 splicing regulation, we show here that this specificity lies in the RNA binding domains of SRp20 and ASF/SF2 and not in the RS domains. Surprisingly, a deletion of 14 amino acids at the end of ASF/SF2-RBD2 converts ASF/SF2 from an inhibitor to an activator of exon 4 splicing. We found that ASF3 also inhibits exon 4 recognition, thus acting similarly to ASF/SF2, while SC35 activates a cryptic 5' splice site downstream of exon 3 and, in doing so, represses exon 4 use. In contrast, Tra2 and the SR proteins 9G8 and SRp40 do not appear to affect exon 4 splicing.  相似文献   

4.
The cellular protein p32 was isolated originally as a protein tightly associated with the essential splicing factor ASF/SF2 during its purification from HeLa cells. ASF/SF2 is a member of the SR family of splicing factors, which stimulate constitutive splicing and regulate alternative RNA splicing in a positive or negative fashion, depending on where on the pre-mRNA they bind. Here we present evidence that p32 interacts with ASF/SF2 and SRp30c, another member of the SR protein family. We further show that p32 inhibits ASF/SF2 function as both a splicing enhancer and splicing repressor protein by preventing stable ASF/SF2 interaction with RNA, but p32 does not block SRp30c function. ASF/SF2 is highly phosphorylated in vivo, a modification required for stable RNA binding and protein-protein interaction during spliceosome formation, and this phosphorylation, either through HeLa nuclear extracts or through specific SR protein kinases, is inhibited by p32. Our results suggest that p32 functions as an ASF/SF2 inhibitory factor, regulating ASF/SF2 RNA binding and phosphorylation. These findings place p32 into a new group of proteins that control RNA splicing by sequestering an essential RNA splicing factor into an inhibitory complex.  相似文献   

5.
BACKGROUND: SR family and SR-related proteins assemble on exonic splicing enhancer (ESE) sequences to promote both constitutive and regulated splicing. The SRm160 splicing coactivator, an SR-related nuclear matrix protein of 160 kDa, is important for the splicing of specific constitutive and ESE-dependent pre-mRNAs. RESULTS: In the present study, we show that SRm160 is required to promote pre-mRNA splicing mediated by a large population of functional ESE sequences within a randomized 18 nucleotide sequence. This suggests that it functions as a general coactivator by interacting with different SR family/SR-related proteins bound to different ESE sequences. Consistent with this, several SR family and SR-related proteins coimmunoprecipitated specifically with SRm160 in the presence of low salt. We used RNA interference (RNAi) in Caenorhabditis elegans to determine whether interactions between CeSRm160 and different CeSR family proteins are important in a whole-organism context. Previously we showed that RNAi of CeSRm160 and individual CeSR family genes other than CeSF2/ASF results in no obvious phenotype, which is indicative of gene redundancy. In the present study, we demonstrate that RNAi of CeSRm160 in combination with any CeSR family gene results in the production of unfertilized oocytes by the injected mother. CONCLUSIONS: The observation that simultaneous suppression of CeSRm160 and individual CeSR family proteins results in a distinct phenotype is indicative of critical functional interactions between these factors. Our results provide biochemical and genetic evidence indicating that interactions between SRm160 and multiple SR family proteins are important for both optimal splicing activity and for proper development.  相似文献   

6.
Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteins modulate splicing efficiency and alternative splicing of pre-mRNA in rice, we used transient assays in rice protoplasts by cotransformation of SR protein genes with the rice Waxy(b) (Wx(b))-beta-glucuronidase fusion gene. The results showed that plant-specific RSp29 and RSZp23, an SR protein homologous to human 9G8, enhanced splicing and altered the alternative 5' splice sites of Wx(b) intron 1. The resulting splicing pattern was unique to each SR protein; RSp29 stimulated splicing at the distal site, and RSZp23 enhanced splicing at the proximal site. Results of domain-swapping experiments between plant-specific RSp29 and SCL26, which is a homolog of human SC35, showed the importance of RNA recognition motif 1 and the Arg/Ser-rich (RS) domain for the enhancement of splicing efficiencies. Overexpression of plant-specific RSZ36 and SRp33b, a homolog of human ASF/SF2, in transgenic rice changed the alternative splicing patterns of their own pre-mRNAs and those of other SR proteins. These results show that SR proteins play important roles in constitutive and alternative splicing of rice pre-mRNA.  相似文献   

7.
XE7: a novel splicing factor that interacts with ASF/SF2 and ZNF265   总被引:1,自引:0,他引:1       下载免费PDF全文
Pre-mRNA splicing is performed by the spliceosome. SR proteins in this macromolecular complex are essential for both constitutive and alternative splicing. By using the SR-related protein ZNF265 as bait in a yeast two-hybrid screen, we pulled out the uncharacterized human protein XE7, which is encoded by a pseudoautosomal gene. XE7 had been identified in a large-scale proteomic analysis of the human spliceosome. It consists of two different isoforms produced by alternative splicing. The arginine/serine (RS)-rich region in the larger of these suggests a role in mRNA processing. Herein we show for the first time that XE7 is an alternative splicing regulator. XE7 interacts with ZNF265, as well as with the essential SR protein ASF/SF2. The RS-rich region of XE7 dictates both interactions. We show that XE7 localizes in the nucleus of human cells, where it colocalizes with both ZNF265 and ASF/SF2, as well as with other SR proteins, in speckles. We also demonstrate that XE7 influences alternative splice site selection of pre-mRNAs from CD44, Tra2-β1 and SRp20 minigenes. We have thus shown that the spliceosomal component XE7 resembles an SR-related splicing protein, and can influence alternative splicing.  相似文献   

8.
The mRNA export pathway is highly conserved throughout evolution. We have used RNA interference (RNAi) to functionally characterize bona fide RNA export factors and components of the exon-exon junction complex (EJC) in Caenorhabditis elegans. RNAi of CeNXT1/p15, the binding partner of CeNXF1/TAP, caused early embryonic lethality, demonstrating an essential function of this gene during C. elegans development. Moreover, depletion of this protein resulted in nuclear accumulation of poly(A)(+) RNAs, supporting a direct role of NXT1/p15 in mRNA export in C. elegans. Previously, we have shown that RNAi of CeSRm160, a protein of the EJC complex, resulted in wild-type phenotype; in the present study, we demonstrate that RNAi of CeY14, another component of this complex, results in embryonic lethality. In contrast, depletion of the EJC component CeRNPS1 results in no discernible phenotype. Proteins of the REF/Aly family act as adaptor proteins mediating the recruitment of the mRNA export factor, NXF1/TAP, to mRNAs. The C. elegans genome encodes three members of the REF/Aly family. RNAi of individual Ref genes, or codepletion of two Ref genes in different combinations, resulted in wild-type phenotype. Simultaneous suppression of all three Ref genes did not compromise viability or progression through developmental stages in the affected progeny, and only caused a minor defect in larval mobility. Furthermore, no defects in mRNA export were observed upon simultaneous depletion of all three REF proteins. These results suggest the existence of multiple adaptor proteins that mediate mRNA export in C. elegans.  相似文献   

9.
SR proteins have a characteristic C-terminal Ser/Arg-rich repeat (RS domain) of variable length and constitute a family of highly conserved nuclear phosphoproteins that can function as both essential and alternative pre-mRNA splicing factors. We have cloned a cDNA encoding a novel human SR protein designated SRp30c, which has an unusually short RS domain. We also cloned cDNAs encoding the human homologues of Drosophila SRp55/B52 and rat SRp40/HRS. Recombinant proteins expressed from these cDNAs are active in constitutive splicing, as shown by their ability to complement a HeLa cell S100 extract deficient in SR proteins. Additional cDNA clones reflect extensive alternative splicing of SRp40 and SRp55 pre-mRNAs. The predicted protein isoforms lack the C-terminal RS domain and might be involved in feedback regulatory loops. The ability of human SRp30c, SRp40 and SRp55 to modulate alternative splicing in vivo was compared with that of other SR proteins using a transient contransfection assay. The overexpression of individual SR proteins in HeLa cells affected the choice of alternative 5' splice sites of adenovirus E1A and/or human beta-thalassemia reporters. The resulting splicing patterns were characteristic for each SR protein. Consistent with the postulated importance of SR proteins in alternative splicing in vivo, we demonstrate complex changes in the levels of mRNAs encoding the above SR proteins upon T cell activation, concomitant with changes in the expression of alternatively spliced isoforms of CD44 and CD45.  相似文献   

10.
SR proteins are required for constitutive pre-mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-terminal arginine/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnuclear localization, and regulation of alternative splicing in vivo. We observed striking differences in the localization signals present in several human SR proteins. In contrast to earlier studies of RS domains in the Drosophila suppressor-of-white-apricot (SWAP) and Transformer (Tra) alternative splicing factors, we found that the RS domain of SF2/ASF is neither necessary nor sufficient for targeting to the nuclear speckles. Although this RS domain is a nuclear localization signal, subnuclear targeting to the speckles requires at least two of the three constituent domains of SF2/ASF, which contain additive and redundant signals. In contrast, in two SR proteins that have a single RRM (SC35 and SRp20), the RS domain is both necessary and sufficient as a targeting signal to the speckles. We also show that RRM2 of SF2/ASF plays an important role in alternative splicing specificity: deletion of this domain results in a protein that, although active in alternative splicing, has altered specificity in 5′ splice site selection. These results demonstrate the modularity of SR proteins and the importance of individual domains for their cellular localization and alternative splicing function in vivo.  相似文献   

11.
Exonic splicing enhancers (ESEs) are pre-mRNA cis-acting elements required for splice-site recognition. We previously developed a web-based program called ESEfinder that scores any sequence for the presence of ESE motifs recognized by the human SR proteins SF2/ASF, SRp40, SRp55 and SC35 (http://rulai.cshl.edu/tools/ESE/). Using ESEfinder, we have undertaken a large-scale analysis of ESE motif distribution in human protein-coding genes. Significantly higher frequencies of ESE motifs were observed in constitutive internal protein-coding exons, compared with both their flanking intronic regions and with pseudo exons. Statistical analysis of ESE motif frequency distributions revealed a complex relationship between splice-site strength and increased or decreased frequencies of particular SR protein motifs. Comparison of constitutively and alternatively spliced exons demonstrated slightly weaker splice-site scores, as well as significantly fewer ESE motifs, in the alternatively spliced group. Our results underline the importance of ESE-mediated SR protein function in the process of exon definition, in the context of both constitutive splicing and regulated alternative splicing.  相似文献   

12.
The cardiac troponin T pre-mRNA contains an exonic splicing enhancer that is required for inclusion of the alternative exon 5. Here we show that enhancer activity is exquisitely sensitive to changes in the sequence of a 9-nucleotide motif (GAGGAAGAA) even when its purine content is preserved. A series of mutations that increased or decreased the level of exon inclusion in vivo were used to correlate enhancer strength with RNA-protein interactions in vitro. Analyses involving UV cross-linking and immunoprecipitation indicated that only four (SRp30a, SRp40, SRp55, and SRp75) of six essential splicing factors known as SR proteins bind to the active enhancer RNA. Moreover, purified SRp40 and SRp55 activate splicing of exon 5 when added to a splicing-deficient S100 extract. Purified SRp30b did not stimulate splicing in S100 extracts, which is consistent with its failure to bind the enhancer RNA. In vitro competition of SR protein splicing activity and UV cross-linking demonstrated that the sequence determinants for SR protein binding were precisely coincident with the sequence determinants of enhancer strength. Thus, a subset of SR proteins interacts directly with the exonic enhancer to promote inclusion of a poorly defined alternative exon. Independent regulation of the levels of SR proteins may, therefore, contribute to the developmental regulation of exon inclusion.  相似文献   

13.
The alternative splicing of the last intron (intron D) of bovine growth hormone (bGH) pre-mRNA requires a down-stream exonic splicing enhancer (FP/ESE). The presence of at least one SR protein has been shown to be essential for FP/ESE function and splicing of intron D in in vitro splicing assays. However, in vitro reconstitution of splicing using individual purified SR proteins may not accurately reflect the true complexity of alternative splicing in an intact nucleus, where multiple SR proteins in varying amounts are likely to be available simultaneously. Here, a panel of recombinant baculovirus-expressed SR proteins was produced and tested for the ability to activate FP/ESE-dependent splicing. Individual recombinant SR proteins differed significantly in their activity in promoting intron D splicing. Among the recombinant SR proteins tested, SRp55 was the most active, SC35 showed very little activity, and ASF/SF2 and 9G8 individually had intermediate activity. At least one SR protein (ASF/SF2) bound to the FP/ESE with characteristics of a cooperative interaction. Most interestingly, low concentrations of ASF/SF2 and 9G8 acted synergistically to activate intron D splicing. This was due in part to synergistic binding to the FP/ESE. Splicing of bGH intron D is inherently complex, and is likely controlled by an interaction of the FP/ESE with several trans-acting protein factors acting both independently and cooperatively. This level of complexity may be required for precise control of alternative splicing by an exon sequence, which simultaneously is constrained to maintain translational integrity of the mature mRNA.  相似文献   

14.
15.
The alternative exon EIIIA of the fibronectin gene is included in mRNAs produced in undifferentiated mesenchymal cells but excluded from differentiated chondrocytes. As members of the SR protein family of splicing factors have been demonstrated to be involved in the alternative splicing of other mRNAs, the role of SR proteins in chondrogenesis-associated EIIIA splicing was investigated. SR proteins interacted with chick exon EIIIA sequences that are required for exon inclusion in a gel mobility shift assay. Addition of SR proteins to in vitro splicing reactions increased the rate and extent of exon EIIIA inclusion. Co-transfection studies employing cDNAs encoding individual SR proteins revealed that SRp20 decreased mRNA accumulation in HeLa cells, which make A+ mRNA, apparently by interfering with pre-mRNA splicing. Co-transfection studies also demonstrated that SRp40 increased exon EIIIA inclusion in chondrocytes, but not in HeLa cells, suggesting the importance of cellular context for SR protein activity. Immunoblot analysis did not reveal a relative depletion of SRp40 in chondrocytic cells. Possible mechanisms for regulation of EIIIA splicing in particular, and chondrogenesis associated splicing in general, are discussed.  相似文献   

16.
SRp38基因研究进展   总被引:1,自引:0,他引:1  
SR蛋白在前体mRNA可变剪接调控中发挥重要作用。可变剪接调节因子SRp38作为一种新近发现的具有神经及生殖组织特异性的SR蛋白,有典型的SR蛋白结构特征并能够调控GluR-B、TRK-C以及NCAML1等基因的可变剪接,但与其他SR蛋白不一致的是,SRp38可以在一定条件下(有丝分裂M期,热休克)抑制前体mRNA剪接,从而防止错误剪接的出现。SRp38的RRM结构域可以识别特殊的RNA序列并跟U1snRNP结合,而其RS结构域则参与调控前体mRNA剪接。SRp38的磷酸化状态可以影响其调控功能的发挥,在有丝分裂M期及热休克时,该蛋白质均呈去磷酸化状态。SRp38在爪蟾胚胎神经发育过程中发挥作用并且可以同TLS(translocation liposarcoma)蛋白相互作用,提示其可能通过调节前体mRNA可变剪接在神经系统的发育分化以及在肿瘤的发生中扮演角色。  相似文献   

17.
18.
SRrp86 is a unique member of the SR protein superfamily of splicing factors containing one RNA recognition motif and two serine-arginine (SR)-rich domains separated by an unusual glutamic acid-lysine (EK) rich region. Previously, we showed that SRrp86 could regulate alternative splicing by both positively and negatively modulating the activity of other SR proteins as long as the entire region encompassing the RS-EK-RS domains was intact. To further investigate the function and domains of SRrp86, we generated a series of chimeric proteins by swapping the RNA recognition motif and RS domains between SRrp86 and two canonical members of the SR superfamily, ASF/SF2 and SRp75. Although domain swaps between SRrp86 and ASF/SF2 showed that the RRMs primarily determined splicing activity, swaps between SRrp86 and SRp75 demonstrated that the RS domains could also determine activity. Because SRp75 also has two RS domains but lacks the EK domain, we further investigated the role of the EK domain and found that it acts to repress splicing and splice-site selection, both in vitro and in vivo. Incubation of extracts with peptides encompassing the EK-rich region inactivated splicing and insertion of the EK region into SRp75 abolished its ability to activate splicing. Thus, the unique EK domain of SRrp86 plays a modulatory role controlling RS domain function.  相似文献   

19.
We have identified an 86-kDa protein containing a single amino-terminal RNA recognition motif and two carboxy-terminal domains rich in serine-arginine (SR) dipeptides. Despite structural similarity to members of the SR protein family, p86 is clearly unique. It is not found in standard SR protein preparations, does not precipitate in the presence of high magnesium concentrations, is not recognized by antibodies specific for SR proteins, and cannot complement splicing-defective S100 extracts. However, we have found that p86 can inhibit the ability of purified SR proteins to activate splicing in S100 extracts and can even inhibit the in vitro and in vivo activation of specific splice sites by a subset of SR proteins, including ASF/SF2, SC35, and SRp55. In contrast, p86 activates splicing in the presence of SRp20. Thus, it appears that pairwise combination of p86 with specific SR proteins leads to altered splicing efficiency and differential splice site selection. In all cases, such regulation requires the presence of the two RS domains and a unique intervening EK-rich region, which appear to mediate direct protein-protein contact between these family members. Full-length p86, but not a mutant lacking the RS-EK-RS domains, was found to preferentially interact with itself, SRp20, ASF/SF2, SRp55, and, to a slightly lesser extent, SC35. Because of the primary sequence and unique properties of p86, we have named this protein SRrp86 for SR-related protein of 86 kDa.  相似文献   

20.
Expression of a gfp transgene in the intestines of living Caenorhabditis elegans has been measured following depletion by RNAi of a variety of known splicing factors and mRNA export proteins. Reduction of most splicing factors showed only a small effect on expression of the transgene in the animal injected with dsRNA, although most of these RNAi's resulted in embryonic lethality in their offspring. In contrast, RNAi of nxf-1, the worm homolog of mammalian NXF1/TAP, a key component of the mRNA export machinery, resulted in dramatic suppression of GFP expression in the injected animals. When we tested other proteins previously reported to be involved in marking mRNAs for export, we obtained widely divergent results. Whereas RNAi of the worm REF/Aly homologs had no obvious effect, either in the injected animals or their offspring, RNAi of UAP56, reported to be the partner of REF/Aly, resulted in strong suppression of GFP expression due to nuclear retention of its mRNA. Overexpression of UAP56 also resulted in rapid loss of GFP expression and lethality at all stages of development. We conclude that UAP56 plays a key role in mRNA export in C. elegans, but that REF/Aly may not. It also appears that some RNA processing factors are required for viability (e.g., U2AF, PUF60, SRp54, SAP49, PRP8, U1-70K), whereas others are not (e.g., U2A', CstF50).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号