首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
VEGF与肿瘤血管生成及其在抗肿瘤药物开发中的应用   总被引:2,自引:0,他引:2  
何艳  曹以诚 《生命科学》2008,20(2):222-224
肿瘤血管生成在肿瘤的形成和转移过程中起到很重要的作用,众多的血管生成因子和抑制因子在肿瘤血管生成中起到调控作用,而血管生成因子(VEGF)是其中很重要的一类,通过研究其在肿瘤血管形成过程的调节机制,找到了一条有效的预防和治疗肿瘤的新途径。本文就肿瘤血管生成、VEGF家族的特性、VEGF在抗肿瘤药物开发中的应用做一综述。  相似文献   

2.
刘锦  孙立  袁胜涛 《生物磁学》2011,(5):978-981
血管的生成与肿瘤密切相关,抑制肿瘤血管生成可以调节肿瘤的生长。体内存在着内源性的促血管生成因子和抑制因子的平衡,当促血管形成因子增强就会产生新生血管供肿瘤生长,而当抑制因子增强则会抑制肿瘤的生长。本文即对细胞外基质衍生的内源性血管生成抑制因子TSP、内皮他丁、Arresten;Canstatin、Endorepellin、Fibulin、Tumstatin等的特性、应用和作用机制等作一总结。  相似文献   

3.
血管的生成与肿瘤密切相关,抑制肿瘤血管生成可以调节肿瘤的生长。体内存在着内源性的促血管生成因子和抑制因子的平衡,当促血管形成因子增强就会产生新生血管供肿瘤生长,而当抑制因子增强则会抑制肿瘤的生长。本文即对细胞外基质衍生的内源性血管生成抑制因子TSP、内皮他丁、Arresten;Canstatin、Endorepellin、Fibulin、Tumstatin等的特性、应用和作用机制等作一总结。  相似文献   

4.
目的:研究氢氧化钠溶液瘤内注射对肝癌的生长抑制作用并探索其机制。方法:对SMMU-LTNM肝癌裸鼠皮下模型进行2%浓度的氢氧化钠溶液瘤内注射,检测肿瘤组织微血管密度、HIF-1α和VEGF的表达情况。结果:与生理盐水瘤内注射组相比,氢氧化钠显著抑制肿瘤生长(P〈0.01)、降低肿瘤微血管密度(P=0.01)、抑制肿瘤组织HIF-1α和VEGF的表达(P=0.02和P=0.01)。结论:氢氧化钠瘤内注射可有效抑制肝癌生长,主要机制可能是抗血管生成作用。  相似文献   

5.
新血管生成是各种生理和病理过程发生的基础。在胚胎形成和胎盘发育等正常生理过程中,新血管的生成是至关重要的;然而对于一些疾病的产生,特别是肿瘤的生长、进展和转移,同样离不开血管生成的作用。伴随着“抗肿瘤血管生成疗法”的提出,控制血管生成“开关”的血管生成刺激因子和抑制因子成为研究的热点。Arresten、Canstatin、Tumstatin和Hexastatin是近些年发现的内源性的血管生成抑制因子,它们同系Ⅳ型胶原α链的非胶原区NC1,具有相似的结构和分子量大小,现有研究表明,它们能与内皮细胞表面整合素受体相结合,有效地抑制内皮细胞的增殖和迁移,降低肿瘤组织的微血管密度,切断肿瘤的营养和氧气供给,从而抑制肿瘤的生长和转移。对其作用机制的研究,将有助于肿瘤血管生成抑制剂新药的研发。  相似文献   

6.
内皮抑制素的研究进展   总被引:1,自引:0,他引:1  
肿瘤生长依赖新生血管的形成,通过抑制血管内皮细胞,切断肿瘤生长所需的营养途径,阻断新生血管形成,从而达到抑制肿瘤生长的目的,Endostatin(内皮抑制素)具有抑制肿瘤血管生成和肿瘤转移最强烈,最特异的生物学活性,且不产生耐药,是目前发现最为理想的血管生成抑制因子。  相似文献   

7.
刘晓萃  何守志 《生物磁学》2011,(13):2597-2600
血管再生在血管发展和内环境的稳定中起重要作用。错乱的血管再生导致多种疾病,如肿瘤和缺血性疾病。近年来研究证实,MicroRNAs在血管再生及调控内皮细胞功能中起重要作用,如miR-126在内皮细胞中特异性表达并调控血管生成;miR-210在缺氧导致的血管生成及内皮细胞存活中发挥重要作用;miR-17-92簇在体外可以抑制内皮细胞的增殖及在基质胶中抑制血管管腔的形成;miR-378、miR-296、miR-21和miR-31可促进肿瘤血管发生等。深入研究血管microRNAs的体内功能,将为有效抑制血管再生,改变血管病理发展提供一种新的治疗策略。  相似文献   

8.
血管再生在血管发展和内环境的稳定中起重要作用。错乱的血管再生导致多种疾病,如肿瘤和缺血性疾病。近年来研究证实,MicroRNAs在血管再生及调控内皮细胞功能中起重要作用,如miR-126在内皮细胞中特异性表达并调控血管生成;miR-210在缺氧导致的血管生成及内皮细胞存活中发挥重要作用;miR-17~92簇在体外可以抑制内皮细胞的增殖及在基质胶中抑制血管管腔的形成;miR-378、miR-296、miR-21和miR-31可促进肿瘤血管发生等。深入研究血管microRNAs的体内功能,将为有效抑制血管再生,改变血管病理发展提供一种新的治疗策略。  相似文献   

9.
血管生成素(angiogenin,ANG)是首个被发现来源于肿瘤的具有血管生成能力的蛋白质,但其在炎症中的作用机制尚未完全阐明. 研究表明, ANG在炎症性疾病的发生发展中起重要作用,并与炎症的调控密切相关,而慢性炎症正是导致肿瘤形成、生长和转移的因素之一. 本文以ANG与炎症的关联为基础,结合我们的工作阐述ANG在炎症性疾病特别是肿瘤中的作用和调控机制,明确ANG与蛋白质的相互作用、对信号通路的调控及核内作用是其发挥功能的重要机制,也可能是调控肿瘤炎症的重要机制. 因而,深入研究ANG与炎症的关系不仅可加深我们对ANG兼具抗炎、抗新生血管双重功能的认识,更可为炎症性疾病的治疗提供潜在的作用靶点和新的思路和方法.  相似文献   

10.
色素上皮衍生因子(pigment epithelium—defived factor,PEDF)是一种具有神经营养保护、抑制新生血管增生和抑制肿瘤生长等作用的多功能蛋白质。体内外试验证明,PEDF通过抑制新生血管生成、诱导肿瘤细胞分化和抑制肿瘤细胞增殖及迁移等多个环节抑制肿瘤的生长,成为治疗肿瘤的候选药物。  相似文献   

11.
Tumor angiogenesis is characterized by abnormal vessel morphology, endowing tumor with highly hypoxia and unresponsive toward treatment. To date, mounting angiogenic factors have been discovered as therapeutic targets in antiangiogenic drug development. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors exerts potent antiangiogenic activity in tumor therapy. Therefore, it may provide a valid strategy for cancer treatment through targeting the tumor angiogenesis via VEGFR2 pathway. In this study, we established a high-profile compounds library and certificated a novel compound named N-(N-pyrrolidylacetyl)-9-(4-bromobenzyl)-1,3,4,9-tetrahydro-β-carboline (YF-452), which remarkably inhibited the migration, invasion and tube-like structure formation of human umbilical vein endothelial cells (HUVECs) with little toxicity invitro. Rat thoracic aorta ring assay indicated that YF-452 significantly blocked the formation of microvascular exvivo. In addition, YF-452 inhibited angiogenesis in chick chorioallantoic membrane (CAM) and mouse corneal micropocket assays. Moreover, YF-452 remarkably suppressed tumor growth in xenografts mice model. Furthermore, investigation of molecular mechanism revealed that YF-452 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal regulated kinase (ERK), focal adhesion kinase (FAK) and Src. These results indicate that YF-452 inhibits angiogenesis and may be a potential antiangiogenic drug candidate for cancer therapy.  相似文献   

12.
Sharks: A Potential Source of Antiangiogenic Factors and Tumor Treatments   总被引:3,自引:0,他引:3  
Since angiogenesis is a key feature of tumor growth, inhibiting this process is one way to treat cancer. Cartilage is a natural source of material with strong antiangiogenic activity. This report reviews knowledge of the anticancer properties of shark cartilage and clinical information on drugs such as neovastat and squalamine. Because their entire endoskeleton is composed of cartilage, sharks are thought to be an ideal source of angiogenic and tumor growth inhibitors. Shark cartilage extract has shown antiangiogenic and antitumor activities in animals and humans. The oral administration of cartilage extract was efficacious in reducing angiogenesis. Purified antiangiogenic factors from shark cartilage, such as U-995 and neovastat (AE-941), also showed antiangiogenic and antitumor activity. AE-941 is under phase III clinical investigation. Squalamine, a low molecular weight aminosterol, showed strong antitumor activity when combined with chemotherapeutic materials. The angiogenic tissue inhibitor of metalloprotease 3 (TIMP-3) and tumor suppressor protein (snm23) genes from shark cartilage were cloned and characterized.  相似文献   

13.
Angiotensin-(1-7) [ANG-(1-7)], an endogenous bioactive peptide constituent of the renin-angiotensin system, acts as an inhibitory growth factor in vitro and in vivo. In this study, we evaluated whether the antiangiogenic effect of ANG-(1-7) in the mouse sponge model of angiogenesis might be receptor mediated and involved in the release of nitric oxide (NO). The hemoglobin content (microg/mg wet tissue) of 7-day-old sponge implants was used as an index of the vascularization and showed that daily injections of ANG-(1-7) (20 ng) inhibited significantly the angiogenesis in the implants relative to the saline-treated group. The specific receptor antagonist D-Ala(7)-ANG-(1-7); A-779 prevented ANG-(1-7)-induced inhibition of angiogenesis. The antiangiogenic effect was also abolished by pretreatment with NO synthase inhibitors aminoguanidine (1 mg/ml) or N(G)-nitro-L-arginine methyl ester (0.3 mg/ml). Selective AT1 and AT2 angiotensin-receptor antagonists and an angiotensin-converting enzyme inhibitor, in combination with ANG-(1-7) or alone, did not alter angiogenesis in the implants. These results establish that the regulation of the vascular tissue growth by ANG-(1-7) is associated with NO release by activation of an angiotensin receptor distinct from AT1 and AT2.  相似文献   

14.
It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.  相似文献   

15.
新生血管生成是绝大多数肿瘤得以生长和转移的必要前提。所以 ,通过抑制肿瘤血管生成来抑制肿瘤是非常有前途的一种方法 ,有望发展成为一种新型的癌症疗法。主要可以分为两大类 :一是通过抑制促血管生成信号或扩大抑制血管生成因子的作用来干扰肿瘤新生血管的形成过程 ,这领域的广泛研究已经发现了一系列促血管生成因子及其抑制剂和血管生成抑制因子 ;二是利用肿瘤血管与正常血管的差别来携带杀伤性药物直接特异性破坏已形成的肿瘤血管 ;另外 ,内皮细胞及其前体细胞制成疫苗也可起到直接杀伤作用。到目前为止 ,虽然很多抑制肿瘤血管的药物已经被用于临床试验 ,但结果往往不尽如人意 ,从长远来看 ,需要更有效的治疗方法。包括抗血管基因治疗策略 ,靶向药物导入系统的研究 ,以及抗血管生成药物和免疫疗法、化疗和放射治疗的联合应用都在探讨中。随着肿瘤模型评估系统的发展 ,抗血管治疗肿瘤的方法在不久的将来一定会广泛进入临床应用。  相似文献   

16.
Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis.  相似文献   

17.
Developing antiangiogenic agents using natural products has remained a significant hope in the mainstream of anticancer research. In the present investigation series of flavonoids possessing di-, tri-, tetra-, and penta-hydroxy substitutions were evaluated as antiangiogenic agents using in vivo choriallantoic membrane model. The MTT-based cytotoxicity against selected cancer cell lines was carried out to determine the anticancer potential. The kinetics of free radical scavenging activities of these compounds was demonstrated using 2,2-diphenyl-1-picryl hydrazine (DPPH) and superoxide anion radicals (SORs). To understand the possible antiangiogenic mechanism, the selected flavonoids were docked in silico onto the proangiogenic peptides such as vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF-1α), and vascular endothelial growth factor receptor-2 (VEGFR2) from human origin. The results of the study shows that amongst the tested flavonoids, genistein (87.1%), kaempferol, (86.3%), and quercetin (84.7%) were found to be effective inhibitors of angiogenesis in CAM model. The antiangiogenic, cytotoxic, and antioxidant activities are discussed in light of structure–activity relationship using in silico approach and other drug-related properties were also calculated using BioMed CAChe V. 6.1.10. The results of the present study focus the isoflavone genistein, kaempferol, and quercetin as lead molecules for designing novel anti-tumor/antioxidant agents targeting angiogenesis.  相似文献   

18.
To determine whether angiogenesis is necessary for normal alveolarization, we studied the effects of two antiangiogenic agents, thalidomide and fumagillin, on alveolarization during a critical period of lung growth in infant rats. Newborn rats were treated with daily injections of fumagillin, thalidomide, or vehicle during the first 2 wk of life. Compared with control treatment, fumagillin and thalidomide treatment reduced lung weight-to-body weight ratio and pulmonary arterial density by 20 and 36%, respectively, and reduced alveolarization by 22%. Because these drugs potentially have nonspecific effects on lung growth, we also studied the effects of Su-5416, an inhibitor of the vascular endothelial growth factor receptor known as kinase insert domain-containing receptor/fetal liver kinase (KDR/flk)-1. As observed with the other antiangiogenic agents, Su-5416 treatment decreased alveolarization and arterial density. We conclude that treatment with three different antiangiogenic agents attenuated lung vascular growth and reduced alveolarization in the infant rat. We speculate that angiogenesis is necessary for alveolarization during normal lung development and that injury to the developing pulmonary circulation during a critical period of lung growth can contribute to lung hypoplasia.  相似文献   

19.
Inhibition of protein neddylation, particularly cullin neddylation, has emerged as a promising anticancer strategy, as evidenced by the antitumor activity in preclinical studies of the Nedd8-activating enzyme (NAE) inhibitor MLN4924. This small molecule can block the protein neddylation pathway and is now in clinical trials. We and others have previously shown that the antitumor activity of MLN4924 is mediated by its ability to induce apoptosis, autophagy and senescence in a cell context-dependent manner. However, whether MLN4924 has any effect on tumor angiogenesis remains unexplored. Here we report that MLN4924 inhibits angiogenesis in various in vitro and in vivo models, leading to the suppression of tumor growth and metastasis in highly malignant pancreatic cancer, indicating that blockage of angiogenesis is yet another mechanism contributing to its antitumor activity. At the molecular level, MLN4924 inhibits Cullin–RING E3 ligases (CRLs) by cullin deneddylation, causing accumulation of RhoA at an early stage to impair angiogenic activity of vascular endothelial cells and subsequently DNA damage response, cell cycle arrest and apoptosis due to accumulation of other tumor-suppressive substrates of CRLs. Furthermore, we showed that inactivation of CRLs, via small interfering RNA (siRNA) silencing of its essential subunit ROC1/RBX1, recapitulates the antiangiogenic effect of MLN4924. Taken together, our study demonstrates a previously unrecognized role of neddylation in the regulation of tumor angiogenesis using both pharmaceutical and genetic approaches, and provides proof of concept evidence for future development of neddylation inhibitors (such as MLN4924) as a novel class of antiangiogenic agents.  相似文献   

20.
Essential factors associated with hepatic angiogenesis   总被引:3,自引:0,他引:3  
Das SK  Vasudevan DM 《Life sciences》2007,81(23-24):1555-1564
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号