首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundLead (Pb) is ubiquitous in the environment and is an environmental genotoxic metal. Pb accumulation in the body could cause the oxidative stress.ObjectiveThis meta-analysis aimed to perform a systematic evaluation of the extent of oxidative damage in rats/mice induced by lead.MethodsAll relevant articles in English or Chinese were retrieved from Embase, PubMed, Web of Science, Medline, China National Knowledge Infrastructure, and Chinese Biological Medicine databases from their inception date until July 22, 2018.ResultsA total of 108 eligible articles were included in this study. The indicators of oxidative stress included malondialdehyde (MDA), glutathione disulfide (GSSG), reactive oxygen species (ROS), hydrogen peroxide (H2O2), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione-s-transferase (GST). The meta-analysis showed that lead significantly increased oxidants levels, such as MDA, GSSG, ROS, and H2O2 (P < 0.05), and significantly reduced the level of antioxidants, such as CAT, GPx, GR, GSH, SOD, and GST (P < 0.05). The intraperitoneal mode was more effective than water drinking mode in reducing the levels of CAT, GPx, GSH, and SOD (P < 0.05). Other factors that influenced the overall oxidative stress, including species of animals, type of tissues, and intervention dosage and time, were comprehensively evaluated.ConclusionThe results of meta-analysis indicated that mice were more sensitive to lead than rats, and intraperitoneal mode was an effective intervention mean. High doses and long periods of lead treatment can cause serious oxidative damage. Moreover, testicular was more vulnerable to lead than other tissues. These results provided scientific evidence for preventing and treating lead toxicity.  相似文献   

2.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

3.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

4.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

5.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

6.
The potential usefulness of an insect model to evaluate oxidative stress induced by environmental pollutants was examined with trivalent arsenic (As3+, NaAsO2) and pentavalent arsenic (As5+, Na2HAsO4) in adult female house flies, Musca domestica, and fourth-instar cabbage loopers, Trichoplusia ni. M. domestica was highly susceptible to both forms of arsenic following 48 h exposure in the drinking water with LC50s of 0.008 and 0.011% w/v for As3+ and As5+, respectively. T. ni larvae were susceptible to dietary As3+ with an LC50 of 0.032% w/w but seem to tolerate As5+ well with an LC50 of 0.794% concentration after 48 h exposure. The minimally acute LC5 dose of both As3+ and As5+ varied considerably but averaged 0.005% for both insects. The potential of both valencies of arsenic for inducing oxidative stress in the insects exposed ad libitum to approximately LC5 levels was assessed. The parameters examined were the alterations of the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), the peroxidase activity of glutathione transferase (GSTPX), and glutathione reductase (GR), and increases in lipid peroxidation and protein oxidation. SOD (1.3-fold), GST (1.6-fold), and GR (1.5-fold) were induced by As3+ in M. domestica but CAT and GSTPX were not affected. As5+ had no effect on M. domestica. In T. ni, the antioxidant enzyme activities were not affected by As3+ except for SOD which was suppressed by 29.4% and GST which was induced by 1.4-fold. As5+ had no effect except the suppression of SOD by 41.2%. Lipid peroxidation and protein oxidation, which represent stronger indices of oxidative stress, were elevated in both insects by up to 2.9-fold. However, based on the antioxidant enzyme response to the arsenic anions, the mode of action of arsenic induced oxidative stress may differ between the two insects. Until this aspect is further clarified, evidence at this time favors the prospect of As3+ as a pro-oxidant, especially for M. domestica. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Enzymatic antioxidants such as selenium-dependent glutathione peroxidase (GPx), glutathione transferase (GST), glutathione reductase (GR), and superoxide dismutases (SOD), as well as the concentration of hydrogen peroxide (H2O2) and malondialdehyde (MDA, an indicator of lipid peroxidation) were determined to identify which antioxidant enzymes participate in the efficient scavenging of ROS generated upon exposure to high doses of Cd2+ in fourth-instar Propsilocerus akamusi (Tokuna) (Diptera: Chironomidae) larvae after 72-h exposure. A significant increase in MDA levels and a change in GR and GPx activities in the Cd(2+)-treated P. akamusi were observed. The MDA in 25.0 and 50.0 mmol/liter treatments was significantly higher than that of the control dose after 72 h exposure. GPx activity was significantly induced by Cd2+ exposure only in the 50.0-mmol/liter treatment with a 0.59-fold increase in the control. All doses of Cd2+ significantly suppressed GR activity compared with the findings for the control dose, with an inhibited rate up to 0.55-fold in the 25.0 mmol/liter Cd2+ treatment. SOD and GST activities were not altered. The results indicate that Cd2+ can induce oxidative stress as indicated by the changes in lipid peroxidation and antioxidant status. For P. akamusi, an increase in the dose that the threshold needed for defense (namely, MDA level and GPx activity) activation was achieved. From this, organisms can be hypothesized to enable cells to avoid oxidant stress up to a certain extent where damage is again measurable (higher Cd2+ concentration).  相似文献   

8.
Swimming has relevant physiological changes in farmed fish, although the potential link between swimming and oxidative stress remains poorly studied. We investigated the effects of different medium-term moderate swimming conditions for 6 h on the antioxidant status of gilthead seabream (Sparus aurata), analyzing the activity of enzymes related to oxidative stress in the liver and skeletal red and white muscle. Forty fish were induced to swim individually with the following conditions: steady low (SL, 0.8 body length (BL)·s−1), steady high (SH, 2.3 BL·s−1), oscillating low (OL, 0.2–0.8 BL·s−1) and oscillating high (OH, 0.8–2.3 BL·s−1) velocities, and a non-exercised group with minimal water flow (MF, < 0.1 BL·s−1). All swimming conditions resulted in lower activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione-S-transferase (GST) in the liver compared to the MF group, while steady swimming (SL and SH) led to higher reduced glutathione/oxidized glutathione ratio (GSH/GSSG) compared to the MF condition. Swimming also differently modulated the antioxidant enzyme activities in red and white muscles. The OH condition increased lipid peroxidation (LPO), catalase (CAT) and glutathione peroxidase (GPx) activities in the red muscle, decreasing the GSH/GSSG ratio, whereas the SL condition led to increased GSH. Oscillating swimming conditions (OL and OH) led to lower CAT activity in the white muscle, although GPx activity was increased. The GSH/GSSG ratio in white muscle was increased in all swimming conditions. Liver and skeletal muscle antioxidant status was modulated by exercise, highlighting the importance of adequate swimming conditions to minimize oxidative stress in gilthead seabream.  相似文献   

9.
Gao M  Li Y  Long J  Shah W  Fu L  Lai B  Wang Y 《Mutation research》2011,719(1-2):52-59
Benzo[a]pyrene [B(a)P] is one of the most prevalent environmental carcinogens and genotoxic agents. However, the mechanisms of B(a)P-induced oxidative damage in cervical tissue are still not clear. The present study was to investigate the oxidative stress and DNA damage in cervix of ICR female mice induced by acute treatment with B(a)P. Oxidative stress was assayed by analysis of malondialdehyde (MDA), superoxide anion and H(2)O(2), and antioxidant enzymes. The alkaline single-cell electrophoresis (SCGE) was used to measure DNA damage. The contents of MDA and glutathione (GSH), and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were significantly increased in cervix 24, 48 and 72h after B(a)P treatment of a single dose of 12.5 and 25mg/kg, while GSH, CAT, SOD and GST had no significant difference with the dose of 50mg/kg B(a)P at post-treatment time 48 and 72h except for SOD activity at 48h which was significant. The maximum values of SOD, CAT, GST and GSH were peaked at 24h and then decreased gradually while GPx activities and MDA levels persisted for up to 72h. Superoxide anion, H(2)O(2) and DNA damage changed similarly as the activity of SOD, CAT or GST. Additionally, increases of formamidopyrimidine DNA glycosylase (FPG) specific DNA damage were observed and can be greatly rescued by vitamin C pretreatment. Overall, B(a)P demonstrated a time- and dose- related oxidative stress and DNA damage in cervix.  相似文献   

10.
王银  朱艺峰  陈芝丹 《生态科学》2011,30(3):301-308
检索中国期刊全文数据库(1994.1~2009.8)、万方数据库(1980.1~2009.8)、维普数据库(1989.1~2009.8),以及Scopus(1960.1~2009.8)、Elsevier(52009.8)、SpringerLink(52009.8)和Blackwell(52009.8)数据库,系统收集涉及温度变化导致鱼类组织超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)、谷胱甘肽还原酶(GR)、还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)和丙二醛(MDA)变化的相关研究,对纳入23篇文献进行了数据提取和Meta分析,并系统评价变温对鱼类抗氧化防御的影响。除GSSG由于研究数太少不能分析外,Meta分析显示:升温显著提高SOD(标准化均数差SMD=1.0,95% CI=0.4~1.7,P=0.001)和GPX(SMD=0.4,95% CI=0.1~0.7,P=0.005)活力,降温显著下调GPX(SMD=-0.9,95% CI=-1.7~-0.1,P=0.025)和GR(SMD=-1.6,95% CI=-2.5~-0.8,P<0.001)活力。升降温对CAT活力和GSH均无显著影响(P>0.05),但都会显著增加MDA水平(SMD=1.2~1.4,P<0.006)。不同鱼类、组织和测定方法不是引起研究异质性的主要因素,但试验设计的变温幅度是产生SOD、CAT和MDA研究间异质性的主要因子,实验开始温度也会引起GSH研究间的异质性。  相似文献   

11.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean &#45 SEM of 270 &#45 12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

12.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean ±SEM of 270 ±12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

13.
Identifying patients at risk of developing premature coronary artery disease (PCAD) which occurs at age below 45 years old and constitutes approximately 7–10% of coronary artery disease (CAD) worldwide remains a problem. Oxidative stress has been proposed as a crucial step in the early development of PCAD. This study was conducted to determine the oxidative status of PCAD in comparison to CAD patients. PCAD (<45 years old) and CAD (>60 years old) patients were recruited with age-matched controls (n?=?30, each group). DNA damage score, plasma malondialdehyde (MDA) and protein carbonyl content were measured for oxidative damage markers. Antioxidants such as erythrocyte glutathione (GSH), oxidised glutathione (GSSG), and glutathione peroxidase activity (GPx), superoxide dismutase (SOD) and catalase (CAT) were also determined. DNA damage score and protein carbonyl content were significantly higher in both PCAD and CAD when compared to age-matched controls while MDA level was increased only in PCAD (p<.05). In contrast, GSH, GSH/GSSG ratio, α-tocotrienol isomer, and GPx activity were significantly decreased, but only in PCAD when compared to age-matched controls. The decrease in GSH was associated with PCAD (OR?=?0.569 95%CI [0.375???0.864], p?=?.008) and cut-off values of 6.69?μM with areas under the ROC curves (AUROC) 95%CI: 0.88 [0.80–0.96] (sensitivity of 83.3%; specificity of 80%). However, there were no significant differences in SOD and CAT activities in all groups. A higher level of oxidative stress indicated by elevated MDA levels and low levels of GSH, α-tocotrienol and GPx activity in patients below 45 years old may play a role in the development of PCAD and has potential as biomarkers for PCAD.  相似文献   

14.
以不同耐旱型品种‘南农99-6’和‘科丰1号’大豆为材料,2012年在南京农业大学牌楼试验站进行为期110 d的盆栽试验,研究大豆花期叶面喷施α-萘乙酸(NAA)对长期干旱条件下大豆植株抗氧化系统的影响.结果表明: 干旱胁迫显著降低了大豆地上部干物质量,叶片中丙二醛(MDA)含量及活性氧(ROS)水平显著升高,同时,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽还原酶(GR)和谷胱甘肽过氧化物酶(GPX)活性,还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)含量及AsA/DHA(双脱氢抗坏血酸)和GSH/GSSG(氧化型谷胱甘肽)比值显著升高,其中‘科丰1号’大豆的抗氧化能力更高,从而维持较低的ROS水平和MDA含量.NAA可显著提高叶片中的APX、POD、CAT、MDHAR活性及AsA/DHA、GSH/GSSG比值,其中‘科丰1号’大豆叶片的脱氢抗坏血栓还原酶(DHAR)活性和AsA含量极显著增加.  相似文献   

15.
Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

16.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

17.
Dietary cholesterol and aging are major risk factors to accelerate oxidation process for developing hypercholesterolemia. The major aim of this study is to elucidate the effects of rice protein on cholesterol level and oxidative stress in adult rats fed with and without cholesterol. After 2 weeks of feeding, hepatic and plasma contents of cholesterol, reduced glutathione (GSH), oxidized glutathione (GSSG), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In liver, total antioxidative capacity (T-AOC), activities of antioxidant enzymes (total superoxide dismutase, T-SOD; catalase, CAT), glutathione metabolizing enzyme activities and gene expression levels (γ-glutamylcysteine synthetase, γ-GCS; glutathione reductase, GR; glutathione peroxidase, GPx) were determined. Under cholesterol-free/enriched dietary condition, T-AOC, activities of T-SOD and CAT, glutathione metabolism related enzymes' activities and mRNA levels (γ-GCS, GR and GPx) were effectively stimulated by rice proteins as compared to caseins. Compared with caseins, rice proteins significantly increased hepatic and plasma GSH contents, whereas hepatic and plasma accumulations of MDA, PCO and GSSG were significantly reduced by rice protein-feedings. As a result, the marked reductions of cholesterol in the plasma and in the liver were observed in adult rats fed rice proteins with and without cholesterol. The present study demonstrates that the hypocholesterolemic effect of rice protein is attributable to inducing antioxidative response and depressing oxidative damage in adult rats fed cholesterol-free/enriched diets. Results suggest that the antioxidant capability involved in the hypocholesterolemic action exerted by rice protein is independent of dietary cholesterol during adult period.  相似文献   

18.
Abstract

Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

19.
The present study showed that exposure of chlorpyrifos, O,O'-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothionate (CPF), a widely used pesticide in rats caused significant inhibition of acetylcholinesterase (AChE) activity in different tissues viz., liver, kidney and spleen. CPF exposure also generated oxidative stress in the body, as evidenced by increase in thiobarbituric acid reactive substances (TBARS), decrease in the levels of superoxide scavenging enzymes viz., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in liver, kidney and spleen at all doses. Malondialdehyde levels were increased by 14%, 31% and 76% in liver, 11%, 31% and 64% in kidney and 32%, 75% and 99.9% in spleen when 50 mg, 100 mg and 200 mg/kg body wt. CPF was administered for three days. SOD and CAT activities were decreased in liver, kidney and spleen, while GPx activity showed slight increase in kidney at 50 mg and 100 mg dose, and decreased on further increase in dose of CPF. Liver and spleen showed dose-dependent decrease in GPx activity. The levels of reduced glutathione (GSH) was decreased, while oxidized glutathione (GSSG) was increased, thus a marked fall in GSH/GSSG ratio was observed in all tissues. A maximum decrease of 83% was observed in liver, followed by kidney and spleen, which showed 78% and 57% decrease, respectively in group given 200 mg/kg CPF. The levels of glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) were also decreased in liver and kidney, while spleen showed increase at lower doses, but decrease at high dose of CPF. The data provide evidence for induction of oxidative stress on CPF exposure.  相似文献   

20.
Tat-interactive protein 60 kDa (TIP60, also known as lysine acetyltransferase 5 [KAT5]) is a member of the MYST protein family with histone acetyltransferase activity. Recent studies have reported that TIP60 has multiple functions in many signal transduction mechanisms, especially p53-mediated apoptosis. Although the activation of apoptosis signaling pathways requires the presence of cellular reactive oxygen species (ROS) at a certain level, an imbalance between the production and consumption of ROS in cells results in oxidative stress (OS). In this study, we investigated for the first time how the absence of the Tip60 gene in the liver affects gene expression, enzyme activity, and protein expression of the hepatic antioxidant members localized in the cytoplasm, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). First, we successfully generated liver-specific Tip60 knockout mice (mutants) using Cre/LoxP recombination. The reduced glutathione level and nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, a marker of OS, increased significantly in the Tip60 mutant liver. Gene expression, activity, and protein expression of the enzymatic antioxidant system, including SOD, CAT, GR, GPx, and GST were investigated in mutants and control groups. Despite a significant correlation between the gene, enzyme activity, and protein content for CAT and GR, this was not true for SOD and GPx. The overall results suggest that TIP60 acts on the hepatic antioxidant system both at the gene and protein levels, but the actual effect of the deletion of Tip60 is observed at the protein level, especially for SOD and GPx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号