首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

2.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.  相似文献   

3.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

4.
The effect of 20-hydroxyecdysone (20E) and juvenile hormone (JH) on the glutathione pathway of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) was determined by investigating glutathione peroxidase (GSH-Px), glutathione S-transferases (GST), and glutathione reductase (GR) activities as well as reduced and oxidized glutathione (GSH and GSSG) content with respect to developmental stage. The continuous decreases of GSH-Px and GST activities dependent on the growth period of G. mellonella occurred in JH and 20E groups over and under their controls, respectively. While the GR activities of G. mellonella showed increases in young pupa (YP) for both control and in old larvae (OL) for the 20E groups after the minimum at these periods, they also increased after old pupa (OP) for the JH group with a maximum in OL period. Although GR activity levels in the JH group were significantly higher compared with controls and 20E groups up to OP period, the activity levels for the control and 20E groups were higher than those of the JH group at adult (AD) and old pupa (OP) periods, respectively. In spite of increases in the GR activity of 20E and control groups of G. mellonella, decreased GSH and increased GSSG levels were observed at aging period. GSH levels in the JH group reached a maximum at prepupa (PP) and then decreased with non-significant changes from OL to AD period. According to the results, GSH and GSSG levels, as well as GSH/GSSG ratios, were below and over control levels in 20E and JH groups, respectively, during all of the investigated developmental stages. On the contrary, the LPO levels were higher than the control for 20E and lower for the JH groups during the developmental period. These results show that while ecdysone hormone has a negative effect on the glutathione-related detoxication capacity of G. mellonella, the juvenile hormone has a positive effect on this process.  相似文献   

5.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

6.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

7.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

8.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

9.
Administration of lead (1.25 and 2.5 mumol/kg egg weight) to 14-day-old chick embryos enhanced the level of lipid peroxides (LPO) in tissues of liver, brain, and heart. Accumulation of LPO was maximum at 9 h after treatment with lead and returned to normal level by 72 h. Further, we have studied the levels of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. At 9 h posttreatment, the hepatic GR was reduced significantly with the induction of GST and considerable depletion of GSH. However, in brain and heart, both GR and GST activities were unaltered with significant reduction of GSH. Further, an increase of non-Se-dependent GPx and SOD activities were observed in liver, brain, and heart. Similarly, at 72 h, although the GPx activity was found decreased in liver and brain, the GST, catalase, and SOD activities were significantly increased in all the three tissues alike, suggesting tissue-specific changes of antioxidant defense components in response to lead treatment. Our results suggests that the elevated levels of GST, SOD, and catalase at 72 h were successful in bringing LPO levels back to normal.  相似文献   

10.
To compare the effects of alpha-ketoglutarate (alpha-KG) and melatonin on 24-h rhythmicity of oxidative stress in N-nitrosodiethylamine (NDEA)-injected Wistar male rats, melatonin (5 mg/kg i.p.) or alpha-KG (2 g/kg through an intragastric tube) was given daily for 20 weeks. In blood collected at 6 time points during a 24-h period, serum activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein (alpha-FP) were measured as markers of liver function. To assess lipid peroxidation and the antioxidant status, plasma levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured, together with the activity of erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST). NDEA augmented mesor and amplitude of rhythms in AST and ALT activity and plasma alpha-FP levels and mesor values of plasma TBARS, while decreasing mesor values of plasma GSH and erythrocyte SOD, CAT, GPx and GST. Acrophases were delayed by NDEA in all cases except for alpha-FP rhythm, which became phase-advanced. Co-administration of melatonin or alpha-KG partially counteracted the effects of NDEA. Melatonin decreased mesor of plasma TBARS and augmented mesor of SOD activity. The results indicate that melatonin and alpha-KG are effective in protecting from NDEA-induced perturbation of 24-h rhythms in oxidative stress. Melatonin augmented antioxidant defense in rats.  相似文献   

11.

Aims

The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome.

Main methods

The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n = 20) compared to healthy controls (n = 18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically.

Key Findings

Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls.

Significance

The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.  相似文献   

12.
This study aimed to estimate reactive oxygen species (ROS) production, antioxidants activity, and biomarkers level of oxidative damage to protein and DNA in the cerebrospinal fluid (CSF) of C57BL/6 mice infected with Angiostrongylus cantonensis. The mean ROS concentration in the CSF of infected mice increased gradually, and the increase in ROS in CSF became statistical significance at days 12-30 post-infection compared to that before infection (< 0.001), and then ROS returned to normal level at day 45 after infection. In parallel with the increase in ROS in the CSF, infected mice showed similar of changes in reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST) as that in ROS in the CSF. GSH, GR, GPx, and GST in the CSF of infected mice were all significantly higher than they were before infection during days 12-30 post-infection. However, protein carbonyl content and 8-hydroxy-2′-deoxyguanosine, biomarkers of oxidative damage to protein and DNA, respectively, were also significantly higher in the CSF of infected mice during this period. These results suggest that oxidative stress occur in the cells of central nervous system of mice infected with A. cantonensis during days 12-30 after infection due to ROS overproduction in CSF despite the increase in antioxidants during this period.  相似文献   

13.
Summary Reduced glutathione (GSH) levels and glutathione reductase (GR) and glutathione S-transferase (GST) activities were investigated in the erythrocytes and lymphocytes of non-dialyzed patients with varying degrees of chronic renal insufficiency, and also of patients on regular hemodialysis treatment. GSH, GR and GST levels were higher in erythrocytes and lymphocytes of examined patients as compared to their corresponding age-matched healthy controls. A correlation was found between the degree of renal insufficiency and the above parameters tested. A routine hemodialysis did not significantly affect erythrocyte and lymphocyte GSH content and activities of its associated enzymes. The increased GSH levels as well as GSH-linked enzyme activities of blood cells in uremia may be a protective mechanism for the cells due to the accumulation of toxic, oxidizing, wastes in the blood as a result of the uremic state. This view is supported by the results ofin vitro experiments, which have shown that GR and GST activities of normal human lymphocytes are increased when incubated with plasma from uremic patients.  相似文献   

14.
The molecular basis of the toxic properties of phenoxy herbicides in humans and animals has been insufficiently studied. In this study, damage parameters [levels of reduced glutathione (GSH) and total glutathione; activity of glutathione reductase (GR); activities of catalase (CAT) and superoxide dismutase (SOD); levels of adenine nucleotides and adenine energy charge (AEC)] were measured in human erythrocytes exposed in vitro to 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and its metabolite 2,4,5-trichlorophenol (2,4,5-TCP). Both 2,4,5-T and 2,4,5-TCP decreased the level of reduced glutathione (GSH) in erythrocytes in comparison to the control, but did not significantly change the total glutathione (2GSH + GSSG). This suggests that GSH concentration decreases concomitantly with an increase in oxidized glutathione (GSSG). 2,4,5-TCP at 100 ppm significantly decreased catalase and SOD activities. 2,4,5-T and 2,4,5-TCP did not significantly change the activity of glutathione reductase. 2,4,5-TCP decreased the level of ATP and increased the content of ADP and AMP, indicating a fall in AEC. 2,4,5-T and 2,4,5-TCP significantly changed the erythrocyte morphology. All these data are evidence of oxidative stress in erythrocytes incubated with 2,4,5-T and 2,4,5-TCP; the stress appears to be more intense in the case of 2,4,5-TCP.  相似文献   

15.
The metabolism of ethanol gives rise to the generation of excess amounts of reactive oxygen species and is also associated with immune dysfunction. We examined the efficacy of resveratrol and vitamin E on the immunomodulatory activity and vascular function in mice with liver abnormalities induced by chronic ethanol consumption by measuring the protein, liver-specific transaminase enzymes, antioxidant enzymes and non-enzymes such as reduced glutathione (GSH) content, thiobarbituric acid reactive substance (TBARS) level, nitrite level, and activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx) and glutathione-S-transferase (GST), and cytokines such as interleukin (IL)-2, IL-4, IL-10, tumor necrosis factor (TNF)-alpha, gamma interferon (IFN-gamma), vascular endothelial growth factor (VEGF)-A and transforming growth factor (TGF)-beta1 in mice blood. Ethanol (1.6 g/kg body wt/day) exposure for 12 wks significantly increased TBARS and nitrite levels and GST activity, and significantly decreased GSH content and the activities of SOD, CAT, GR and GPx in whole blood hemolyzate of 8-10 wks-old male BALB/c mice (weighing 20-30 g). Ethanol exposure also elevated the activities of transaminase enzymes (AST and ALT), IL-10, TNF-alpha, IFN-gamma, VEGF-A and TGF-beta1, while decreasing the albumin concentration and IL-4 activity in the serum. Both resveratrol (5 mg kg(-1) day(-1)) and vitamin E (80 mg kg(-1) day(-1)) treatment significantly reduced AST, ALT, GST, IL-10, TNF-alpha, IFN-gamma, VEGF-A and TGF-beta1 activities and levels of TBARS and nitrite, and elevated albumin content, GSH level and activities of SOD, CAT, GR and GPx, compared to ethanol-treated group. Thus, results from the study demonstrated that both resveratrol (5 mg kg(-1) day(-1)) and vitamin E (80 mg kg(-1) day(-1)) can effectively ameliorate ethanol (1.6 g kg(-1) day(-1))-induced oxidative challenges, immunomodulatory activity and angiogenesis processes.  相似文献   

16.
The present study showed that exposure of chlorpyrifos, O,O'-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothionate (CPF), a widely used pesticide in rats caused significant inhibition of acetylcholinesterase (AChE) activity in different tissues viz., liver, kidney and spleen. CPF exposure also generated oxidative stress in the body, as evidenced by increase in thiobarbituric acid reactive substances (TBARS), decrease in the levels of superoxide scavenging enzymes viz., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in liver, kidney and spleen at all doses. Malondialdehyde levels were increased by 14%, 31% and 76% in liver, 11%, 31% and 64% in kidney and 32%, 75% and 99.9% in spleen when 50 mg, 100 mg and 200 mg/kg body wt. CPF was administered for three days. SOD and CAT activities were decreased in liver, kidney and spleen, while GPx activity showed slight increase in kidney at 50 mg and 100 mg dose, and decreased on further increase in dose of CPF. Liver and spleen showed dose-dependent decrease in GPx activity. The levels of reduced glutathione (GSH) was decreased, while oxidized glutathione (GSSG) was increased, thus a marked fall in GSH/GSSG ratio was observed in all tissues. A maximum decrease of 83% was observed in liver, followed by kidney and spleen, which showed 78% and 57% decrease, respectively in group given 200 mg/kg CPF. The levels of glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) were also decreased in liver and kidney, while spleen showed increase at lower doses, but decrease at high dose of CPF. The data provide evidence for induction of oxidative stress on CPF exposure.  相似文献   

17.
Many individuals with cardiovascular diseases undergo periodic physical conditioning with or without medication. Therefore, this study investigated the interaction of exercise training and chronic nitroglycerin treatment on blood pressure (BP) and alterations in nitric oxide (NO), glutathione (GSH), antioxidant enzyme activities and lipid peroxidation in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training for 8 weeks, (3) nitroglycerin (15 mg/kg, s.c. for 8 weeks) and (4) training + nitroglycerin for 8 weeks. BP, heart rate (HR) and respiratory exchange ratio (RER) were monitored weekly for 8 weeks using tail-cuff method and oxygen/carbon dioxide analyzer, respectively. The animals were sacrificed 24 h after last treatments and plasma isolated and analyzed using HPLC, ELISA and UV-VIS spectrophotometric techniques. The results show that exercise conditioning significantly enhanced NO production (p < 0.001), GSH levels (p < 0.001), GSH/GSSG ratio (p < 0.05) and the up-regulation of the activities of catalase (CAT) (p < 0.05), glutathione peroxidase (GSH-Px) (p < 0.001), and glutathione reductase (GR) (p < 0.05), and depression of lactate levels (p < 0.001) in the plasma of the rat. These biochemical changes were accompanied by a significant increase in RER (p < 0.001) without a significant change in BP and HR. Chronic nitroglycerin administration significantly increased NO levels (p < 0.05), GSH levels (p < 0.001), superoxide dismutase (SOD) activity (p < 0.05), GST activity (p < 0.05), and decreased MDA levels (p < 0.05). These biochemical changes were accompanied by a significant decrease in BP (p < 0.05) and without any significant changes in HR and RER. Interaction of exercise training and chronic nitroglycerin treatment resulted in normalization of plasma NO, MDA, lactate levels, and CAT activity. The combination of exercise and nitroglycerin significantly enhanced GSH levels (p < 0.05), and the up-regulation of SOD (p < 0.001), GSH-Px (p < 0.05), GR (p < 0.05) and GST (p < 0.001) activities. These biochemical changes were accompanied by normalization of BP and a significant increased in RER (p < 0.001). The data suggest that the interaction of physical training and chronic nitroglycerin treatment resulted in the maintenance of BP and the up-regulation of plasma antioxidant enzyme activities and GSH levels in the rat.  相似文献   

18.
Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

19.
Burak Kaptaner 《Cytotechnology》2016,68(4):1577-1583
The present study was conducted to determine cytotoxic effects of 4-octylphenol (4-OP) on primary cultured hepatocytes of pearl mullet (Alburnus tarichi). Lactate dehydrogenase (LDH) release, malondialdehyde (MDA) level, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST)] and glutathione (GSH) content were measured after 24-h exposure to 4-OP. 4-OP caused dose- and time-dependent increases in LDH release. Significant induction of MDA level and decrease in GSH content were found. SOD and GPx activities were decreased while GST activity was increased. These findings suggest that 4-OP leads to cytotoxicity by depressing antioxidant defenses in fish hepatocytes.  相似文献   

20.
Free radical-induced lipid peroxidation has been associated with numerous disease processes including diabetes mellitus. The extent of lipid peroxidation (LPO) and antioxidant defense system [i.e., levels of glutathione (GSH), glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT)] were evaluated in reticulocytes and erythrocytes of type 2 diabetic males and age-matched controls. Type 2 diabetics have shown increased lipid peroxidation and decreased levels of GSH, GR, GPx, G6PDH, and GST both in reticulocytes and erythrocytes compared to controls, indicating the presence of oxidative stress and defective antioxidant systems in these patients. CAT activity is found to be enhanced in both the reticulocytes and erythrocytes of diabetics, with a greater percentage enhancement in reticulocytes. The extent of increase in lipid peroxidation is greater in erythrocytes compared to reticulocytes in these patients. Furthermore, the maturation of reticulocytes to erythrocytes resulted in decreased GSH and decreased activities of all antioxidant enzymes (except CAT) both in normals and type 2 diabetes individuals, indicating decreased scavenging capacity as reticulocytes mature to erythrocytes. These maturational alterations are further intensified in type 2 diabetics. The present study reveals that the alterations in lipid peroxidation and antioxidant system lean toward early senescence of erythrocytes in type 2 diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号