首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

2.
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.  相似文献   

3.
Treatment of rats with diamide (100 mg/kg i.p.) altered the thiol components of the blood to a very different extent than in tissues (liver, kidney, lung, spleen, heart and testis). A total consumption (10 min) and regeneration (120 min) of blood glutathione (GSH), matched by a parallel increase and decrease in glutathione-protein mixed disulfides (GS-SP) was observed. In contrast, no modification of non-protein SH groups (NPSH) and protein SH groups (PSH), GS-SP and malondialdehyde (MDA) was observed in liver, kidney, lung, testis spleen and heart within same time range. In particular, only glutathione disulfide (GSSG) levels and some activities of antioxidant enzymes were modified to a small extent and in an opposite direction in some organs. For example, GSSG, and glucose-6-phosphate dehydrogenase (G-6-PDH) and catalase (CAT) activities appeared up-regulated in one tissue and down-regulated in another. The least modified organ was the liver, whereas lung and spleen were the most affected (lung, GSSG, significantly increased whereas G-6-PDH, glutaredoxin (GRX), GPX, superoxide dimutase (SOD) levels were significantly lowered; spleen, GSSG and the activity of glutathione reductase (GR), G-6-PDH and glutathione transferase (GST) were significantly decreased). The different responses of erythrocytes and organs to diamide were explained by the high affinity of hemoglobin and by the relatively high potential of thiol regeneration in organs. The rapid reversibility of the process of protein S-thiolation in blood and the small effects in organs leads us to propose the existence of an inter-organ cooperation in the rat that regulates protein S-thiolation in blood. Plasma thiols may well play a role in this process.  相似文献   

4.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

5.
Old rats (28 months), when compared with young adults (9 months), did not show differences in activities of superoxide dismutase (SOD) or selenium-dependent and -independent glutathione peroxidases (GPx), or in levels of GSH, GSSG, GSSG/GSH and endogenous peroxidation in liver and brain. Rates of stimulated peroxidation in vitro were decreased in the livers of old rats. Old animals showed decreased levels of hepatic catalase and glutathione reductase. Nevertheless, when enzyme activities were referred to cytochrome oxidase activity these decreases disappeared, and GPx and SOD (brain) were even increased in old rats.  相似文献   

6.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

7.
The effect of two different doses (50 and 100 mg/kg body wt/day for 14 days) of 80% ethanolic extract of the leaves of Adhatoda vesica were examined on drug metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of 8 weeks old Swiss albino mice. The modulatory effect of the extract was also examined on extra-hepatic organs viz. lung, kidney and forestomach for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase. Significant increase in the activities of acid soluble sulfhydryl (-SH) content, cytochrome P450, NADPH-cytochrome P450 reductase, cytochrome b5, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed in the liver at both dose levels of treatments. Adhatoda vesica acted as bifunctional inducer since it induced both phase I and phase II enzyme systems. Both the treated groups showed significant decrease in malondialdehyde (MDA) formation in liver, suggesting its role in protection against prooxidant induced membrane damage. The cytosolic protein was significantly inhibited at both the dose levels of treatment indicating the possibility of its involvement in the inhibition of protein synthesis. BHA has significantly induced the activities of GR and GSH in the present study. The extract was effective in inducing GST and DTD in lung and forestomach, and SOD and CAT in kidney. Thus, besides liver, other organs viz., lung, kidney and forestomach were also stimulated by Adhatoda, to increase the potential of the machinery associated with the detoxification of xenobiotic compounds. But, liver and lung showed a more consistent induction. Since the study of induction of the phase I and phase II enzymes is considered to be a reliable marker for evaluating the chemopreventive efficacy of a particular compound, these findings are suggestive of the possible chemopreventive role played by Adhatoda leaf extract.  相似文献   

8.
The antiulcerogenic effect of diffractaic acid (DA) isolated from Usnea longissima, a lichen species, on indomethacin (IND)-induced gastric lesions was investigated in rats. Administration of 25, 50, 100 and 200 mg/kg doses of DA and ranitidine (RAN) (50 mg/kg dose) reduced the gastric lesions by 43.5%, 52.9%, 91.4%, 96.7% and 72.7%, respectively. It is known that oxidative stress leads to tissue injury in organisms. Thus, in all treated groups of rats, the in vivo activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were evaluated. IND caused oxidative stress, which resulted in LPO in tissues, by decreasing the levels of GPx, SOD and GSH as compared to healthy rats. In contrast to IND, the administration of DA and RAN showed a significant decrease in LPO level and an increase in tissue SOD, GPx and GSH levels. However, while CAT activity was significantly increased by the administration of IND, the administration of DA and RAN decreased CAT activity. The administration of IND also increased the myeloperoxidase (MPx) activity, which shows neutrophil infiltration into the gastric mucosal tissues. In contrast to IND, the administration of DA and RAN decreased MPx activity. The changes in activities of gastric mucosal nitric oxide synthases (NOS) throughout the development of gastric mucosal damage induced by IND were also studied. A decrease in constitutive NOS (cNOS) activity and an increase in inducible NOS (iNOS) activity were determined in gastric damaged tissues induced by IND. The administration of DA (100 mg/kg dose) and RAN reversed the activities of iNOS and cNOS. These results suggest that the gastroprotective effect of DA can be attributed to its enhancing effects on antioxidant defense systems as well as reducing effects of neutrophil infiltration.  相似文献   

9.
Present study examines effects of curcumin and vitamin E on oxidative stress parameters, antioxidant defence enzymes and oxidized (GSSG) and reduced glutathione (GSH) levels in testis of L-thyroxine (T4)-induced hyperthyroid rats. The oxidative stress in T4-treated rat testis was evident from elevation in oxidative stress parameters such as lipid peroxide and protein carbonyl contents, decrease in superoxide dismutase (SOD) and catalase (CAT) activities and increase in glutathione peroxidase (GPx) activity. This is accompanied with decrease in number and mortality of epididymal sperms. When the T4-treated rats were fed with vitamin E and/or curcumin, the lipid peroxide and protein carbonyl contents in crude homogenates of testes decreased to normal level. Treatment of curcumin and/or vitamin E to T4-treated rats resulted in elevation of SOD level in postmitochondrial fraction (PMF) and mitochondrial fraction (MF) and CAT in PMF, with decreased GPx activity in MF. However, curcumin or vitamin E was unable to change GPx activity alone but in together they elevated the GPx in PMF of T4-treated rat testis. Both the antioxidants are incapable of producing significant changes in GSH:GSSG ratio of PMF of T4-treated rats. In MF, GSH:GSSG ratio elevated and decreased respectively by curcumin and vitamin E treatments to T4-treated rats, however, in together these antioxidants caused an elevated GSH:GSSG ratio with a value less than when vitamin E given alone to T4-treated rats. Vitamin E not the curcumin elevates total sperm count and percentage of live sperm impaired by hyperthyroid state. In summary, both vitamin E and curcumin are efficient in protecting testis from oxidative stress generated by T4 mainly in restoring antioxidant enzymes to the level of euthyroid animals up to some extent but vitamin E is more efficient than curcumin.  相似文献   

10.
This study examined, in the liver of young and old (3- and 24-month-old, respectively) healthy Wistar rats, the in vivo effect of dehydroepiandrosterone (DHEA) (10mg/kg body weight) administered subcutaneously for 5 weeks. Reduced (GSH) and oxidized (GSSG) glutathione levels, glucose-6-phosphate dehydrogenase (G6PDH), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and catalase (CAT) activities, hydrogen peroxide concentration, GST and p-Akt/Akt immunocontent ratio were assessed in hepatic tissue. DHEA treatment significantly increased total glutathione content (17%) and GSH (22%) in 3- and 24-month-old treated groups when compared to control groups. The aging factor increased G6PDH (51%) and GPx (22%) activities as well as the hydrogen peroxide concentration (33%), independently of treatment. DHEA treatment increased p-Akt (54%) and p-Akt/Akt ratio (36%) immunocontents in both treated groups. Increased serum levels of alanine aminotransferase (ALT) in aged rats were reduced by DHEA treatment (34%).  相似文献   

11.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

12.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean ±SEM of 270 ±12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

13.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

14.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean &#45 SEM of 270 &#45 12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

15.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

16.
The present study investigates the effects of resveratrol (RSV) on brain and liver tissues in rats with pembrolizumab (PEMB)-induced toxicity. Obtained for the study were 28 male Sprague-Dawley rats (3–4 months old) which were divided into four groups: Group 1: Control. Group 2: Administered PEMB at 5 mg/kg/day i.p. for a week. Group 3: Administered RSV orally at the dose of 20 mg/kg/day for 30 days by gavage. Group 4: Administered PEMB and RSV at 20 and 5 mg/kg/day RSV, respectively, for 30 days. The results of this study revealed that PEMB leads to a significant increase in thiobarbituric acid reactive substance (TBARS) levels and a significant decrease in glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD) activities, and glutathione (GSH) levels in the liver and brain tissues. The decreased SOD, CAT, GPx activities, and GSH levels increased significantly following RSV treatment in Group 4. The PEMB treatment showed histopathological alterations associated with strong positive cysteinyl aspartic acid-protease-3 (caspase-3) immunoreactivity, while RSV treatment reduced both the expression of caspase-3 protein and the histopathological changes. RSV administration prevents the biochemical, immunological, and histological alterations induced by PEMB. It can be suggested that the lower caspase-3 immunoreactivity in the PEMB + RSV group than in the PEMB group led to an inhibition of RSV on apoptosis.  相似文献   

17.
We investigated the chemopreventive potential of luteolin on hepatic and circulatory lipid peroxidation and antioxidant status during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Rats were given a weekly subcutaneous injection of DMH at a dose of 20 mg/kg body weight for 15 weeks. Luteolin (0.2 mg/kg body weight/everyday p.o.) was given at the initiation and also at the postinitiation stages of carcinogenesis to DMH treated rats. The animals were sacrificed at the end of 30 weeks. Enhanced lipid peroxidation in the liver and circulation of tumor bearing rats was accompanied by a significant decrease in the levels of plasma and hepatic reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), vitamin C, vitamin E and beta-carotene in DMH treated rats as compared to the control rats. Intragastric administration of luteolin (0.2mg/kg body weight) to DMH-treated rats significantly reduced the incidence and size of tumor in the colon, reduced lipid peroxidation levels and enhanced the plasma and hepatic activities of GSH, GPx, GST, GR, SOD, CAT, vitamin C, vitamin E and beta-carotene. Thus the chemopreventive efficacy of luteolin against colon carcinogenesis is evidenced by our preliminary studies which showed decreased incidence of tumors and the antiperoxidative and antioxidant effect of luteolin. Further study on the exact mechanism of action of luteolin in preventing colon carcinogenesis is yet to be elucidated.  相似文献   

18.
Identifying patients at risk of developing premature coronary artery disease (PCAD) which occurs at age below 45 years old and constitutes approximately 7–10% of coronary artery disease (CAD) worldwide remains a problem. Oxidative stress has been proposed as a crucial step in the early development of PCAD. This study was conducted to determine the oxidative status of PCAD in comparison to CAD patients. PCAD (<45 years old) and CAD (>60 years old) patients were recruited with age-matched controls (n?=?30, each group). DNA damage score, plasma malondialdehyde (MDA) and protein carbonyl content were measured for oxidative damage markers. Antioxidants such as erythrocyte glutathione (GSH), oxidised glutathione (GSSG), and glutathione peroxidase activity (GPx), superoxide dismutase (SOD) and catalase (CAT) were also determined. DNA damage score and protein carbonyl content were significantly higher in both PCAD and CAD when compared to age-matched controls while MDA level was increased only in PCAD (p<.05). In contrast, GSH, GSH/GSSG ratio, α-tocotrienol isomer, and GPx activity were significantly decreased, but only in PCAD when compared to age-matched controls. The decrease in GSH was associated with PCAD (OR?=?0.569 95%CI [0.375???0.864], p?=?.008) and cut-off values of 6.69?μM with areas under the ROC curves (AUROC) 95%CI: 0.88 [0.80–0.96] (sensitivity of 83.3%; specificity of 80%). However, there were no significant differences in SOD and CAT activities in all groups. A higher level of oxidative stress indicated by elevated MDA levels and low levels of GSH, α-tocotrienol and GPx activity in patients below 45 years old may play a role in the development of PCAD and has potential as biomarkers for PCAD.  相似文献   

19.
The effect of long-term administration of alcohol and cigarette smoke independently and both in combination on lipid peroxidation and antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) was studied in liver, kidney, heart and lungs of albino rats. The levels of peroxidation products viz., malondialdehyde, hydroperoxides and conjugated dienes were increased in all the tissues of alcohol administered and smoke-exposed rats. Activities of SOD and CAT were decreased in alcohol-treated and alcohol and smoke combination groups, but increased in smoke-exposed group. Activities of GPx and GST have shown an increase, while concentration of reduced glutathione was found decreased in all the three groups.  相似文献   

20.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号